

Accepted Manuscript

Domain-specific Modelling Language for Belief-Desire-Intention
Software Agents

Geylani Kardas, Baris Tekin Tezel, Moharram Challenger

DOI: 10.1049/iet-sen.2017.0094

To appear in: IET Software

Published online: 4 April 2018

Please cite this article as: Geylani Kardas, Baris Tekin Tezel, Moharram Challenger, Domain-specific
Modelling Language for Belief-Desire-Intention Software Agents, IET Software, doi: 10.1049/iet-
sen.2017.0094.

This is a PDF file of an unedited manuscript that has been accepted for publication. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in its
final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1049/iet-sen.2017.0094
http://dx.doi.org/10.1049/iet-sen.2017.0094
http://dx.doi.org/10.1049/iet-sen.2017.0094

ACCEPTED MANUSCRIPT

1

Domain-specific Modelling Language for Belief-Desire-Intention Software

Agents

Geylani Kardas1, Baris Tekin Tezel2, Moharram Challenger1

1International Computer Institute, Ege University, 35100, Izmir, Turkey

2Computer Science Department, Dokuz Eylul University, 35160, Buca, Izmir, Turkey

geylani.kardas@ege.edu.tr, baris.tezel@deu.edu.tr, moharram.challenger@ege.edu.tr

ABSTRACT

Development of software agents according to Belief-Desire-Intention (BDI) model usually becomes

challenging due to autonomy, distributedness and openness of multi-agent systems (MAS). Hence, in

this paper, a domain-specific modeling language (DSML), called DSML4BDI, is introduced to support

development of BDI agents. The syntax of the language provides the design of agent components

required for the construction of the system according to the specifications of BDI architecture. The

implementation of designed MAS on Jason BDI platform is also possible via model-to-text

transformations built in the DSML. The comparative evaluation results showed that a significant

amount of artifacts required for the exact MAS implementation can be automatically achieved by

employing DSML4BDI. Moreover, time needed for developing a BDI agent system from scratch can

be reduced to one-third in case of using DSML4BDI. Finally, qualitative assessment, based on the

developers’ feedback, exposed how DSML4BDI facilitates development of BDI agents.

1. INTRODUCTION

Design and implementation of software agents and multi-agent systems (MAS) according to Belief-

Desire-Intention (BDI) model [1] are performed in many agent-oriented software engineering (AOSE)

applications (e.g. [2-4]). In BDI architecture, agents constantly monitor their environment and

respond to the changes in the environment. This reaction depends on agent’s mental attitudes. An

agent has three types of mental attitudes which are belief, desire and intention. Beliefs are

information about an agent’s itself, other agents and the environment that the agent is located.

ACCEPTED MANUSCRIPT

2

Desires express all possible states of affairs which might be achieved by an agent. One desire is a

potential trigger for an agent’s actions. Simply, desires are often considered as options for an agent.

Finally, intentions represent the states of affairs which have been decided to work towards by the

agent [5].

Although BDI model enables representation of agent internals and supports the composition of

reactive or proactive agent behaviors, development of software required for constructing BDI agents

usually becomes challenging and time-consuming due to autonomy, distributedness and openness of

MAS. Working in a higher abstraction layer and modeling BDI components within a model-driven

development (MDD) process before going into depths of implementation may help building such

agent systems. Hence, in this paper, a domain-specific modeling language (DSML), called DSML4BDI,

is introduced to support MDD of BDI agents. Modeling all BDI components and relations is possible

by using the graphical syntax of DSML4BDI. Furthermore, the language is also capable of automatic

code generation, which significantly facilitates implementing BDI agents. In this paper, we also

discuss how DSML4BDI enhances development of software agents within the scope of a comparative

language evaluation in which both quantitative and qualitative analyses take place.

The rest of the paper is organized as follows: Syntax descriptions of DSML4BDI are discussed in

Section 2. Section 3 covers operational semantics and code generation facilities of the language.

Assessment of DSML4BDI and achieved results are discussed in Section 4. Related work is given in

Section 5 and Section 6 concludes the paper.

2. ABSTRACT AND CONCRETE SYNTAXES

DSML4BDI’s abstract syntax is based on a metamodel which provides the meta-entities and their

relations for modeling both internal architecture of BDI agents and the organization of MAS. The

metamodel given here is an improved version of the metamodel we introduced in [5]. Not only

providing an all-embracing model of BDI architecture with new entities, the improved metamodel

also elaborates each entity with its inner attributes / properties which are not included in [5]. Fig. 1

shows the Ecore [6] encoded DSML4BDI metamodel in which essential meta-entities are coloured.

During the discussion below, all entities are given in the text with italic font.

Although a MAS is mainly composed of agents, DSML4BDI metamodel includes nine different entities

other than the Agent entity, namely LogicalExpressionSet, RuleSet, PlanLibrary, ActionSet, GoalSet,

EventSet, BeliefBase, MentalNoteSet and FormulaSet both for the complete representation of the

MAS and internal logic structure of individual agents.

ACCEPTED MANUSCRIPT

3

Fig. 1: The metamodel of DSML4BDI modeling language

ACCEPTED MANUSCRIPT

4

BeliefBase is consisted of possible beliefs which may be adopted by agents. BeliefBase of a MAS can

be different from BeliefBase of individual agents. It mostly has a static structure while BeliefBase of

an agent can be changed during the execution of reasoning cycles. In addition, each Belief represents

knowledge about an agent or the environment.

EventSet contains events within the environment. In our approach, each event is represented by a

triggering event which is also a meta-element (Triggering_Event) included in the DSML4BDI

metamodel. Belief or goal changes inside an agent’s mind or an action performed by an agent may

cause happening an event. RuleSet is composed of rules. Each Rule, which allows arriving at a

judgement based on beliefs of an agent, can simplify making certain conditions used in the agent

plans.

ActionSet stores actions that can be used by all agents. Action meta-entity represents what an agent

can perform. The metamodel also supports two specializations of the actions: internal actions and

external actions. Internal actions (represented by the Internal_Action meta-entity) are executed

inside an agent’s mind. Therefore, they cannot directly change the environment. Communication

actions of an agent, called as Messages in the metamodel, are also internal actions. However,

external actions (represented by the External_Action meta-entity) directly change the environment.

GoalSet brings together all candidate Goals which will be achieved by each agent of a MAS. In fact,

goals are the desired states reached by the execution of agent plans. There are two types of goals,

including achievement goals and test goals. An achievement goal represents a state of the

environment, that is desired to be achieved by an agent. A test goal is used to retrieve knowledge

from beliefs of an agent or to check something expected what is actually believed by the agent, while

executing a plan body. Each goal has to be related with a certain triggering event. Hence, these goal

types are included in the metamodel as being attributes of Triggering_Event associated with the goal

of interest.

Reactions of an agent against events are represented by plans in DSML4BDI language. A Plan, which

constitutes the skills of an agent has three distinct parts. These are the triggering event, the context

and the body. Triggering_Event is the post-condition of a plan. Context is the pre-condition of a plan

and composed of LogicalExpressions which allow deducing based on the knowledge. The Body of a

plan contains a list of actions. In addition, a plan also has sub-goals and Mental_Notes which modify

BeliefBase of an agent. Hence, the body of a plan is represented as being a composition of all these

related BodyTerms. Besides, mental notes pertaining to plans are stored in MentalNoteSets. All

possible plans which can be used by an agent, are covered in a PlanLibrary meta-element.

ACCEPTED MANUSCRIPT

5

Finally, LogicalExpressionSet is composed of LogicalExpressions that are to be interpreted as being

either true or false. A LogicalExpression is formed by Terms which can be simple Elements or again

LogicalExpressions. Terms contained in LogicalExpression instances are connected to each other by

logical operators which are the attributes of LogicalExpressions. On the other hand, a

LogicalExpression has a Boolean negation attribute. This attribute represents the complement in

logic. If it takes true value, then LogicalExpression produces logical complement of its own value.

FormulaSet keeps Formulas which represent pure mathematical expressions. These can be used in

LogicalExpressions too.

The concrete syntax of a language is the set of notations responsible for the presentation and

construction of the language. Taking into account DSML specifications, the concrete syntax mainly

provides a mapping between the meta-elements and their representations for the instance models

of meta-model. Hence, we also provided a graphical concrete syntax which maps DSML4BDI’s

abstract syntax elements to their graphical notations. In order to construct DSML4BDI’s concrete

syntax, we benefited from the features of Sirius [7] modeling environment. Both providing a tool for

implementing a graphical editor from an Ecore metamodel and allowing one to define dedicated

editors including diagrams, tables or trees based on a viewpoint approach caused us to build

DSML4BDI’s graphical modeling toolset on Sirius environment in this study.

Four diagram types, named as MAS, Agent, Plan and Logical Expression, can be used for reflecting

different perspectives of a DSML4BDI instance. MAS diagram is the main diagram of the tool. In this

diagram, MAS organization of BDI agents is expressed with including main elements and their

relationship of the modeled MAS. Agent diagrams show internal agent structure which is composed

of plans, beliefs, rules and goals. Plan diagrams are needed for designing plans of the agents in the

MAS organization. Finally, logical expressions, which might be used in any agent plan or rule, are

created in Logical Expression diagrams. Some significant graphical notations pertaining to the

abstract syntax elements, covered inside the DSML4BDI diagram types, are listed in Table 1.

A screenshot from Sirius-based IDE of DSML4BDI is given in Fig. 2. Developers can create BDI models

of agent systems conforming to DSML4BDI specifications by simply drag-and-dropping required items

from the palette residing at the right-side of the modeling environment. Constraint-checks and any

other static semantics controls are automatically made inside the environment. Fig. 2 also contains a

part of an instance DSML4BDI model designed for Garbage Collector MAS which is well-known in

AOSE field. The system has two types of agents, called destructor and collector. The first task of

destructor agents is to report the location of the garbage in the environment to collector agents. The

other task of destructor agents is to burn garbage brought by collector agents. Collector agents go to

ACCEPTED MANUSCRIPT

6

the location of garbage which is told by destructor agents, take the garbage and bring it back to

destructor agents. After the garbage is delivered, collector agents should wait for the new messages.

Table 1 Some of the concepts and their notations provided for DSML4BDI’s graphical concrete syntax

Concept Notation Concept Notation

Agent MAS

Action Mental Note

Action Set Message

Belief Plan

Belief Base Plan Library

Body Rule

Context Rule Set

Event Formula

Event Set Formula Set

External Action Logical Expression

Internal Action Logical Expression Set

Goal Goal Set

3. OPERATIONAL SEMANTICS

A complete DSML definition cannot be made only by specifying the notions and their

representations. It also requires that one provides semantics of language concepts generally in terms

of the meanings of other concepts which are already established. Hence, in this study, the elements

of DSML4BDI’s abstract syntax are mapped into the concepts of Jason [2], which is an interpreter for

an extended version of a Prolog-like logic programming language for BDI agents, called AgentSpeak.

With providing a Java-based interpreter, Jason extends the expressiveness of AgentSpeak during

implementation of cognitive agents. Mapping between DSML4BDI and Jason entities leads a series of

model-to-text (M2T) transformations, which enables the construction of DSML4BDI semantics on

Jason platform and hence automatic generation of executable Jason codes for the corresponding

DSML4BDI model instances is possible.

We used Acceleo [8], a well-known implementation of Object Management Group’s (OMG) Model to

Text Language (MTL) standard, for the implementation of the required M2T transformations. Having

both a simple syntax and an appropriate IDE and the interoperability with Sirius are the main

features caused us to choose Acceleo as the code generator. In order to automatically generate

ACCEPTED MANUSCRIPT

7

Jason codes for the real implementation of DSML4BDI models, M2T rules are executed on Ecore

representations of MAS model instances created inside DSML4BDI’s modeling environment.

When considering Jason platform, each agent is represented with an ASL file including codes written

in AgentSpeak language for the inner structure of the related agent according to BDI architecture.

Simply, an AgentSpeak agent is defined by a set of beliefs, rules and plans. Beliefs represent initial

knowledge of an agent. Rules are logic expressions or mathematical equations. Plans constitute the

actions and/or subgoals to achieve the current goal.

A plan of an AgentSpeak agent consists of a triggering event, a context and a body element. The

triggering event specifies events for which the plan is suitable. The context represents whether the

plan is applicable according to beliefs of the agent. Body is a sequence of basic actions and/or

subgoals.

Fig. 3 includes an excerpt from written Acceleo rules which is perhaps the most important part of the

transformation phase since all agent plans in an ASL file are generated by these rules. Between lines

4 and 6, the triggering event of DSML4BDI agent plan is created and added to ASL file. In line 7, the

context part of the plan is generated if it exists in the DSML4BDI model instance. Remaining Acceleo

codes (starting from line 9) complete the generation of the body of agent plan with including all

modeled body components such as internal actions, external actions, goals and mental notes.

In addition, Jason provides MAS specification files and fundamental Java classes overridden to define

"behaviour" of complete MAS environment. Acceleo templates for the automatic generation of such

specification files from DSML4BDI models are also prepared in our study. However, they are not

discussed here due to space limitations.

In Fig. 4, a snippet from auto-generated Jason ASL files achieved as the result of executing

abovementioned M2T transformations is given. It includes codes for the collector agent modeled in

Fig. 2.

ACCEPTED MANUSCRIPT

8

Fig. 2: DSML4BDI's IDE for MDD of BDI agents

ACCEPTED MANUSCRIPT

9

Fig. 3: An excerpt from Acceleo rules for creating plans in ASL files

Fig. 4: Auto-generated Jason ASL codes of the collector agent modeled in Fig. 2

ACCEPTED MANUSCRIPT

10

4. EVALUATION

An evaluation of DSML4BDI was performed in this study by considering MAS developers’ perspective.

We believe that some kind of comparative evaluation may help clarifying the feasibility of choosing

DSML4BDI for the development of BDI agent systems instead of the classical code-centric way of

development. For this purpose, we adopted the evaluation framework proposed in [9] which

provides the systematic assessment of both the language constructs and the use of agent DSMLs

according to various dimensions and criteria. To the best of our knowledge, it is currently the only

evaluation framework specific to the MAS DSMLs and guides the assessment of model-driven agent

development methodologies.

4.1. Overview of the evaluation approach

Considering the evaluation dimensions and criteria given in [9], the scope of our evaluation in here

mainly covers Development Sub-dimension (under Execution Dimension) and User Perspective Sub-

dimension (under Quality Dimension). Therefore, the evaluation criteria pertaining to these

dimensions, called Output Performance (Generation Performance), Development Time Performance

and Qualitative Analysis by a Questionnaire are taken into consideration. We revised these

dimensions and criteria to make them more meaningful and appropriate for our quantitative

evaluation. Also, the evaluation was separated into two parts: 1) quantitative analysis including

generation performance evaluation and development time evaluation 2) qualitative analysis

including user perspective by using a questionnaire.

The evaluation performed in this study was realized by two groups of evaluators each having 4

software agent developers. In each group, we had 2 Ph.D. candidates and 2 M.Sc. students. All the

evaluators were students of computer related fields and passed graduate courses called Advanced

Software Engineering, Agent-oriented Software Development and Multi-agent Systems, taught in

Computer Engineering Department and International Computer Institute of Ege University. They had

at least 2 years MAS design and implementation experience covering the application of AOSE

methodologies and using some agent development APIs like JADE and JACK. In addition, all

evaluators were familiar with software engineering methodologies, mostly based on UML and having

at least 5 years’ experience on using various IDEs such as Eclipse, NetBeans and IntelliJ IDEA. Four

evaluators were also working in industry at the time of this evaluation performed and possessed the

experience of developing software in industrial scale (2 years on the average). The evaluators were

assigned into groups in a way that the groups are balanced in terms of programming experience level

of each group. First group, called Group A, utilized DSML4BDI during the development of a MAS

provided within a use case study. Second group, called Group B, did not use any domain-specific

ACCEPTED MANUSCRIPT

11

modeling tool including DSML4BDI; instead, they followed a code-centric approach and used generic

software development tools and technologies for the development of the same MAS. Inside the

same use case study, evaluation results were achieved from both groups and their analysis are

reported in this section.

Considering the execution of the case study, first, both teams received a review on Jason as the BDI

agent programming language with including an example for demonstration. This step ensures

countervailing their level of familiarity to the target language and removes the threat of validity

regarding evaluators. Next, Group A received an introduction to DSML4BDI and its IDE for modelling

and code generation. The time spent for this step is considered as an overhead for this group in the

analysis phase. This overhead is ignorable comparing to the whole process since this language

introduction is performed only once for whole team before the beginning of MAS development.

Then, a briefing to the case study and its requirements was made for the both groups. Finally, the

evaluators realized MAS development by going through steps of analyzing the use case,

designing/modelling the system, implementing/generation of code and testing software. Elapsed

times were recorded for each developer and each step, which are analyzed in the next sub-section.

Also, generated and/or developed artifacts of both groups are evaluated to find out especially the

generation performance of DSML4BDI. Development of software required for Garbage Collector MAS

described in Section 2 is taken into account as the case study during our evaluation.

4.2. Results and Discussion

Quantitative analysis of the assessment results according to generation performance and

development time criteria is given in Section 4.2.1. while qualitative findings on questionnaire-based

analysis are discussed in Section 4.2.2.

4.2.1. Quantitative Analysis

We analyzed DSML4BDI’s performance quantitatively by assessing both its power on the generation

of artifacts (called generation performance), and usability of the tools through the time saved for

developers during whole development process (called development time performance).

Generation Performance:

Considering the generative aspect of DSML4BDI, the essential artifacts including ASL and MAS2J files

are generated with their architectural code. Specifically, the interaction between BDI agents is taken

into consideration. To calculate the generation performance, we made a comparison between the

automatically generated code and the delta code added by Group A to complete the code.

ACCEPTED MANUSCRIPT

12

Performance evaluation is fulfilled by comparing the percentage of artifacts automatically generated

and manually developed. These artifacts are number of files, Lines of Code (LoC) of ASL files, and LoC

of MAS2J files. The average of two LoC is calculated to give the overall ratio of the generated LoC and

the cumulative average of all artifacts is calculated to show the development performance

considering whole system. These results are presented in Fig. 5 to ease their comparison and

analysis.

Fig. 5: Generative performance of DSML4BDI

As seen in Fig. 5, all files needed for garbage collector MAS are generated. The production of all files

is crucial in terms of executable code generation. Thus, developers do not need to add new files to

the system. Moreover, all necessary interconnections between these files are provided. The reason

why the generation of all files is possible is that in Jason structure, each agent needs at least one ASL

file and there is need for exactly one MAS2J file for each MAS. Therefore, DSML4BDI model can easily

generate these files for instantiated elements in MAS. This leads to a fruitful generation of number of

files for the system.

In addition, all required MAS2J files are successfully generated from designed models. This is possible

because MAS modelling elements in DSML4BDI represent the MAS structure of BDI agents with

including structural information like: MAS properties, number of agents in the MAS, the properties of

underlying infrastructure, and environment properties.

ACCEPTED MANUSCRIPT

13

According to the results in Fig. 5, the average generated LoC rate is 89%. However, it is worth

indicating that generation rate for the developer in Group A, who is expert on the tool and BDI

agents, was 100% in this study.

On the other hand, the developer with the lowest LoC rate is 75%. The difference here comes from

the quality of the model created by the developers in DSML4BDI, depending on their familiarity with

BDI MAS modelling. Therefore, it is expected that with more practice in some other use cases, the

developer will be able to provide more qualitative model leading to more generated code at the

beginning. Finally, we can see from Fig. 5 that 92.7% of the whole artifacts are generated for average

developers and only 7.3% needed to be developed by these developers to achieve a fully functional

system.

Development Time Performance:

To evaluate DSML4BDI with its supporting tool by considering the time it can save for developers, we

compared and analyzed the times which were recorded during the development efforts of Group A

(DSML4BDI users) and Group B (users who do not benefit from any domain-specific tool). It is worth

stating that Group B evaluators could use any general modelling tools such as UML. Times recorded

for the developers include all steps of MAS development discussed in Section 4.1. The average time

for each of these phases were calculated separately for both groups. Obtained results are presented

in Fig. 6 to facilitate comparing peer phases for both groups. Based on the results given in Fig. 6, the

followings can be deduced for each of the development steps:

 Analysis of the use case is part of the development. It is not depended on any tool, so, both

teams have almost similar analysis time. In fact, this step is only dependent on the

complexity of the problem and is independent of the development language. Therefore, the

difference between times can be ignored.

 The modeling time for Group A is close to the design time for Group B, but the one for Group

A is slightly more than of Group B. Although both DSML4BDI (used by Group A) and UML

(used by Group B) provide drag-and-drop utility, DSMLBDI works with concepts specific to

agent domain in design time with including more detailed elements and their attributes

which will be used during generation. Also, DSML4BDI has static semantics checks enabling

designers to avoid semantical errors which probably take more time to correct them later.

Thus, modeling with DSML4BDI’s tool extends the length of the design time slightly. This kind

of detailed modelling was not considered by Group B developers since they mostly created

the models as documentation artifacts. However, that elapsed time is an investment by

ACCEPTED MANUSCRIPT

14

DSML4BDI users to gain more detailed and accurate codes which will be generated

automatically.

 Perhaps, the implementation is the most important step to compare the results of two

groups. While many files and codes were automatically generated for Group A, Group B

wrote required codes manually based on their design. Because DSML4BDI succeeded in

automatic generation of agent codes by utilizing the products acquired from detailed

modeling. However, Group A developers still needed to complete the generated code by

adding delta codes to have a fully executable program. Consequently, the implementation

time required by Group B is about 9 times more than generation and implementation time

elapsed for Group A’s efforts.

 In the test/error detection step, both groups tried to find syntactic and semantic errors of

the programs. While Group B developers needed to find errors in the entire code, Group A

developers only dealt with delta code added, which is much less than the generated code.

Because generated code constitutes most of the final code and consists of error-free and

almost-ready architectural code that does not need to be re-validated since it is verified by

DSML4BDI constraint checks. Hence, the time required to find errors for Group A is four

times less than for Group B.

 Finally, considering the total development time for both groups, Group A completed the

whole development process about 3 times faster than Group B due to using DSML4BDI and

its IDE.

Fig. 6: Development time performance of DSML4BDI

ACCEPTED MANUSCRIPT

15

4.2.2. Qualitative Analysis

To evaluate DSML4BDI qualitatively, a questionnaire was provided, including five open-ended

questions, which were answered by the evaluators of Group A, who used DSML4BDI in their agent

development process. These questions are:

1. How does DSML4BDI make MAS development easier?

2. How is DSML4BDI appropriate for BDI agent development?

3. Do you think DSML4BDI is powerful enough to model the general MAS structure? Why?

4. Do you feel DSML4BDI’s IDE easy to use? How?

5. Did you encounter any difficulties while using DSML4BDI? If any, please provide your

suggestions to resolve them.

Most of the evaluators answered the first question by indicating that designing inside a domain-

specific graphical editor helped them for determining and visualizing the details of the system from

scratch. One evaluator also stated that DSML4BDI indeed facilitates the construction of agents by

enabling checking the domain rules on the designed models and automatically generating codes with

the required agent interconnections. Another evaluator found code generation feature satisfying

since very little programming is needed to add delta codes to achieve fully functional MAS programs.

One added that the capability of reusing previously modeled elements (e.g. agent plans) during

modeling with DSML4BDI accelerates the development process.

Regarding the responses for the second question, the evaluators agreed on the appropriateness of

DSML4BDI for BDI agent development by mostly indicating that the language provides an all-

embracing model of fundamental BDI elements (e.g. plan, goal, belief, event) and their relations. One

evaluator added that the defined syntax and semantics fully supports the construction of BDI agent

systems with varying sizes. Another evaluator stated that the graphical syntax especially helped him

to the composition of heavy logical and mathematical rule expressions required for BDI agents. The

evaluators also acknowledged DSML4BDI’s support for Jason, one of the well-known BDI agent

frameworks. Moreover, one evaluator confirmed DSML4BDI’s appropriateness in his reply by stating

that the auto-generated code is complete and there is no need for any delta code (especially for BDI

agent plans) in most situations.

The evaluators accredited DSML4BDI’s modeling capability for the general MAS structure with

emphasizing that the modeling language enhanced the system analysis and design by providing all

needed MAS domain concepts and their relations as the first class elements. Two evaluators also

ACCEPTED MANUSCRIPT

16

added that both agent internals and interactions between agents can be adequately modeled and

implemented using the language.

The IDE of DSML4BDI was found easy-to-use in general. One evaluator supported that view by

accentuating how the drag-and-drop feature facilitates MAS modeling. Another evaluator stated that

the developers can instantly see the effect of adding or removing an element to/from a diagram in

the remaining diagrams due to the synchronization between DSML4BDI diagrams and, that definitely

makes the system modelling easier inside several viewpoints. One evaluator had the opinion that the

DSML4BDI’s user-friendly interface empowers the modelling process by guiding the user with the

help of semantic controls. Another one found using the modeling palette in the IDE comfortable

since icons for the modeling elements are understandable and denotative for MAS concepts.

Taking into account the answers received for the last question, some new agent relations and plan

attributes, found missing by the developers, were added into the language’s metamodel.

Corresponding syntax and semantic modifications were realized for the improved version of

DSML4BDI, which is presented in this paper. Visual organization of DSML4BDI concepts and relations

inside the palette of the modeling editor was also re-arranged according to the feedbacks gained

from the evaluators since some of the evaluators found the arrangement of these components inside

the IDE a bit complicated. Some evaluators also admitted that using the IDE is slightly confusing at

the beginning. However, they also confirmed such confusion mainly originates from evaluators’

unfamiliarity to a BDI agent development tool like DSML4BDI. It was the first time for evaluators to

experience such a DSML for MAS.

Finally, as it is the case in any evaluation study, there are also some risks and threats to the validity of

the performed evaluation. First, qualitative evaluation of DSML4BDI, discussed above, was naturally

subjective and mostly based on each evaluator’s own comparison between methods using and

without using DSML4BDI. However, we think that such self-assessment is convenient and acceptable

since Group A evaluators possess significant experience on designing agent systems by using classical

software development approaches and implementing MASs by utilizing only general purpose

languages.

In addition, we preferred to use two different groups instead of a single group for the evaluation,

which may also be a threat to validity. Using a single developer group for MAS development with or

without DSML4BDI provides the advantage of having exactly the same group of developers and

knowledge. However, we think that if the same group were employed for both assessments, e.g.

they first developed the MAS with their usual approaches and then developed the same MAS using

DSML4BDI (or vice versa), that would probably affect the result of evaluation since they unavoidably

ACCEPTED MANUSCRIPT

17

would reflect their experience on the first evaluation to the second. Using two groups eliminated this

risk in our study, but this time we needed to keep the level of knowledge and experience of two

different groups the same. For this purpose, we strongly cared on forming the groups having almost

the same educational background and experience on software engineering and MAS development.

5. RELATED WORK

As indicated in [10], application of MDD and development of DSMLs for MAS emerged in AOSE field

especially for the last decade. Among these studies, Agent-DSL [11] is used for modeling agent

features, like knowledge, interaction and autonomy by presenting a metamodel. Two agent modeling

languages are introduced in [12] considering syntax definitions rather than operational language

semantics. Studies like [13,14] also discuss MDD of agent systems by introducing a series of

transformations on MAS metamodels in different abstractions. Although those transformations may

guide to construct some sort of semantics, related studies describe MAS development

methodologies instead of specifying a complete DSML. In addition, there exist MAS metamodel

proposals (e.g. [15-17]) from which abstract syntaxes of MAS DSMLs can originate. In our work, a

MAS metamodel is also presented similar to abovementioned studies. However, more than providing

just an abstract syntax based on this metamodel, DSML4BDI is a full-fledged modeling language with

including all syntax and semantics constructs required for MDD of agents according to well-known

BDI principles.

Taking into consideration the work in agent DSMLs, the language in [18] enables MAS specification by

having an abstract syntax structured into several aspects each focusing on a specific viewpoint of a

MAS. Another DSML is provided for MASs in [19] based on EMF [6]. The language supports modeling

of agents according to one of the specific MAS methodologies called Prometheus. A similar study [20]

proposes an MDD technique for the definition of agent-oriented engineering process models

according to another specific MAS development methodology called INGENIAS.

The language described in [21] provides a way of code generation from textual agent descriptions for

mobile agent systems. The work conducted in [22] aims at creating a UML-based agent modeling

language, which is able to model various types of agent internal architectures. However, the current

version of the language does not support any code generation, which prevents the execution of

modeled agent systems. SEA_ML language introduced in [23] supports the execution of modeled

agents over a series of model-to-code transformations enabling the construction of interactions

between agents and semantic web services.

ACCEPTED MANUSCRIPT

18

In a recent work [24], how a model-driven framework can be constructed to develop BDI agents by

proposing strategic, tactical and operational views is investigated. Although it is possible to convert

generated dependencies to BDI agents, the implementation of the required transformations and

code generation are not included in the study. The work introduced in [25] aims at modeling Jason

BDI agents. However, the work only consists of presenting a metamodel, not a complete language

implementation like DSML4BDI and does not support the reusability of same concepts (e.g. beliefs,

plans, rules) for different agents of a MAS as is the case with DSML4BDI.

Differentiating from abovementioned MAS DSML studies [18-23], DSML4BDI especially facilitates

both modeling and creation of agent BDI rules and enables the achievement of all artifacts required

for the implementation. Although visual MAS modeling and code generation are also provided in

other DSMLs at some degree, both the quantitative and qualitative assessment of these language

features are not taken into account which make difficult to determine the fruitfulness of using those

DSMLs. Unlike the previous studies, the work herein covers an assessment of the proposed language

to infer on its usability and help adoption of the language by clearly showing its generative

performance and effect on reducing the time needed for MAS development.

6. CONCLUSION

A DSML, called DSML4BDI, for developing BDI agent systems has been introduced in this paper with

including its graphical modeling and code generation features. A comparative evaluation was

performed which revealed the efficiency of employing DSML4BDI. The quantitative analysis on

generation performance showed that developers could achieve the significant amount of the

artifacts required for exact BDI implementations automatically by just using the IDE of DSML4BDI.

The evaluation was also beneficial to determine whether the use of DSML4BDI shortens MAS

development time. Although the evaluators spent a little more time on design during MAS

development by using DSML4BDI, implementation and test of the system were almost 5 times faster

on average for the conducted case study. Taking into account the overall development process, the

evaluation showed that the time needed for developing a BDI agent system from scratch can be

reduced to one-third when DSML4BDI and its IDE are used.

Finally, the qualitative analysis part of the evaluation allowed us to receive feedbacks of agent

developers on using DSML4BDI. Evaluators, who experienced using DSML4BDI, shared their opinions

on DSMLBDI’s convenience and appropriateness for agent development. They mostly confirmed that

the language significantly facilitates the development of BDI agents. Such a qualitative evaluation

ACCEPTED MANUSCRIPT

19

based on the user experiences also guided for eliminating some deficiencies (e.g. adding previously

missing agent relations and plan attributes) and improving the language’s IDE (e.g. reorganization of

visual components for handy usage).

Although many efforts were given on AOSE field for providing new agent software architectures,

methodologies, programming languages, platforms and tools, currently the adoption of software

agents in the real system implementations for various industrial domains is not at the desired level.

That most likely originates from the difficulties encountered on programming agents with general-

purpose languages since such languages do not have built-in constructs, e.g. BDI elements, especially

for goal-oriented intelligent agents. As previously indicated, languages and platforms like AgentSpeak

and Jason are developed for this purpose. However, many agent developers hesitate on using such

languages and platforms due to their high discrimination from well-known languages and developers

do not prefer dealing with hardcoding the required logical and mathematical BDI constructs

mandatory, e.g. in AgentSpeak and Jason. Hence, taking into consideration all features and benefits

of DSML4BDI within this context, we strongly believe that DSML4BDI may also contribute to the

widespread embracement of agent technologies by supporting easy and efficient implementation of

BDI agents for the industry.

DSML4BDI, its modeling and code generation tools and example models are all available online with

including required installation and configuration instructions at:

http://serlab.ube.ege.edu.tr/Bundles/dsml4bdi.zip.

Our future work aims at extending the platform support of DSML4BDI by enabling MAS

implementation in different agent platforms. For this purpose, interoperability between DSML4BDI

and other existing MAS DSMLs can be established via horizontal model transformations.

7. ACKNOWLEDGEMENT

This work is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under

grant 115E591.

ACCEPTED MANUSCRIPT

20

8. REFERENCES

[1] Rao, A.S., Georgeff, M.P.: “Decision procedures for BDI logics”, Journal of Logic and Computation, 1998,
8(3):293-343

[2] Bordini, R.H., Hubner, J.F., Wooldridge, M.: “Programming Multi-Agent Systems in AgentSpeak Using Jason”
(John Wiley & Sons, 2007)

[3] Teket, K.D., Sayit, M., Kardas, G.: “Software agents for peer-to-peer video streaming”, IET Software, 2014,
8(4):184-192

[4] Leito, P., Karnouskos, S.: “Industrial Agents: Emerging Applications of Software Agents in Industry” (Elsevier
Science Publishers, 2015)

[5] Tezel, B.T., Challenger, M., Kardas, G.: “A Metamodel for Jason BDI Agents”. Proc. 5th Symp. Languages,
Applications and Technologies, 2016, pp.8:1-8:9

[6] “Eclipse Modeling Framework”, http://www.eclipse.org/modeling/emf/, accessed March 2018

[7] “Sirius Modeling Tool”, https://eclipse.org/sirius/, accessed March 2018

[8] “Acceleo Code Generator”, https://www.eclipse.org/acceleo/, accessed March 2018

[9] Challenger, M., Kardas, G., Tekinerdogan, B.: “A systematic approach to evaluating domain-specific
modeling language environments for multi-agent systems”, Software Quality Journal, 2016, 24(3):755-795

[10] Kardas, G., Gomez-Sanz, J.J. “Special issue on model-driven engineering of multi-agent systems in theory
and practice”, Computer Languages, Systems & Structures, 2017, 50:140-141

[11] Kulesza, U., Garcia, A., Lucena, C., Alencar, P.: “A generative approach for multi-agent system
development”, Lecture Notes in Computer Science, 2005, 3390:52-69

[12] Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M-P. “Model Driven Engineering for Designing Adaptive
Multi-agent Systems”, Lecture Notes in Artificial Intelligence, 2007, 4995:318-333

[13] Pavon, J., Gomez-Sanz, J.J., Fuentes, R.: “Model driven development of multi-agent systems”. Lecture
Notes in Computer Science, 2006, 4066:284-298

[14] Hahn, C., Madrigal-Mora, C., Fischer, K.: "A Platform-Independent Metamodel for Multiagent Systems",
Autonomous Agents and Multi-Agent Systems, 2009, 18(2):239-266

[15] Omicini, A., Ricci, A., Viroli, M.: “Artifacts in the A&A meta-model for multi-agent systems”, Autonomous
Agents and Multi-Agent Systems, 2008, 17(3):432-456

[16] Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J., Pavon, J., Gonzalez-Perez, C.:
“FAML: A Generic Metamodel for MAS Development”, IEEE Transactions on Software Engineering, 2009,
35(6):841-863

[17] Garcia-Magarino, I.: “Towards the integration of the agent-oriented modeling diversity with a powertype-
based language”, Computer Standards & Interfaces, 2014, 36:941-952

[18] Hahn, C.: “A Domain Specific Modeling Language for Multiagent Systems”, Proc. 7th Int. Conf. Autonomous
Agents and Multi-Agent Systems, 2008, pp.233-240

[19] Gascuena, J.M., Navarro, E., Fernandez-Caballero, A. “Model-Driven Engineering Techniques for the
Development of Multi-agent Systems”, Engineering Applications of Artificial Intelligence, 2012, 25(1):159-173

[20] Fuentes-Fernandez, R., Garcia-Magarino, L., Gomez-Rodriguez, A.M., Gonzalez-Moreno, J.C.: “A technique
for defining agent-oriented engineering processes with tool support”, Engineering Applications of Artificial
Intelligence, 2010, 23(3):432-444

[21] Ciobanu, G., Juravle, C.: “Flexible Software Architecture and Language for Mobile Agents”, Concurrency
and Computation-Practice & Experience, 2012, 24(6):559-571

[22] Goncalves, E.J.T., Cortes, M.I., Campos, G.A.L., Lopes, Y.S., Freire, E.S.S., daSilva, V.T., deOliveira, K.S.F.,
deOliveira, M.A. “MAS-ML2.0: Supporting the modelling of multi-agent systems with different agent
architectures”, Journal of Systems and Software, 2015, 108:77-109

ACCEPTED MANUSCRIPT

21

[23] Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G. and Kosar, T.: “On the use of a domain-
specific modeling language in the development of multiagent systems", Engineering Applications of Artificial
Intelligence, 2014, 28:111-141

[24] Wautelet, Y., Kolp, M.: “Business and model-driven development of BDI multi-agent systems”,
Neurocomputing, 2016, 182:304-321

[25] Cossentino, M., Chella, A., Lodato, C., Lopes, S., Ribino, P., Seidita, V.: “A notation for modeling Jason-like
BDI agents”. Proc. Sixth Int. Conf. Complex, Intelligent and Software Intensive Systems, 2012, pp.12-19

