

Accepted Manuscript

DSML4DT: A domain-specific modeling language for device tree
software

Sadik Arslan, Geylani Kardas

DOI: 10.1016/j.compind.2019.103179

To appear in: Computers in Industry

Published online: 19 December 2019

Please cite this article as: Sadik Arslan, Geylani Kardas, DSML4DT: A domain-specific modeling
language for device tree software, Computers in Industry, doi: 10.1016/j.compind.2019.103179.

This is a PDF file of an unedited manuscript that has been accepted for publication. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in its
final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.compind.2019.103179
https://doi.org/10.1016/j.compind.2019.103179

ACCEPTED MANUSCRIPT

1

DSML4DT: A Domain-specific Modeling Language for Device Tree

Software

Sadik Arslan1,2 and Geylani Kardas1

1International Computer Institute, Ege University, 35100, Bornova, Izmir, Turkey

2Kent Kart Ege Elektronik A.Ş., Research and Development Department, Izmir, Turkey

sadik.arslan@kentkart.com.tr, geylani.kardas@ege.edu.tr

Abstract

Device trees (DTs) provide description of devices and peripherals inside an embedded system

with node specifications. However, developers mostly encounter difficulties in creating DT

applications due to DT syntax different from the well-known general purpose programming

languages. Moreover, both development and configuration of DT software components

regarding different microprocessor architectures can be very hard and time-consuming for

many embedded system developers. In order to eliminate these difficulties, we introduce a

domain-specific modeling language, called DSML4DT, which provides the model-driven

development (MDD) of DT software for the wide range of processor families. The evaluation

of using DSML4DT was performed inside a company producing intelligent transportation

systems. The comparative evaluation results showed that approximately 76% of DT structures

can be obtained automatically only through modeling with DSML4DT. Comparing with the

software development process currently followed in the company, the new MDD process

reduced the time elapsed for implementing a DT software to half. Finally, feedbacks from the

developers confirmed that they adopted the language particularly in terms of functional

suitability, compatibility and reusability.

Keywords: Model-driven engineering, domain-specific modeling language, device trees

1 Corresponding author. Tel: +90-232-3113223 Fax:+90-232-3887230.

ACCEPTED MANUSCRIPT

2

1. Introduction

A Device Tree (DT) is a data structure that allows the identification of physical device

components of embedded system hardware with nodes (Madieu, 2017). Configurations based

on DTs can be applied during the development of embedded system software for various

devices e.g. point of sales, mobile phones, automated fare collectors, network equipments,

medical devices, bus driver terminals, vehicle trackers and home automation products. DTs

are used within standards such as "Open Firmware" and "Power Architecture Platform

Requirements", providing a complete technical description of hardware components

(Devicetree Community, 2019). DT structure allows required peripheral operations to be

performed without touching the core source code (e.g. (Devigne et al., 2017), (Li et al., 2018),

(Jassi et al., 2018)). However, it is hard to implement DT structures, especially in the

development of systems that operate in a large number of different microprocessor

architectures due to need for repeating the same DT configuration.

Moreover, embedded system software developers may find it difficult to learn, prepare and

use DT source files that are text-based and have a structure different from the syntax of

existing programming languages (Arslan and Kardas, 2018). Each new platform-specific file

to be used for DT implementations must be prepared separately and from scratch. In these

files, blocks are coded in DT syntax according to hardware parameters used in the system.

Additionally, the developer must know the microprocessor-specific hardware. Preparing these

files is also challenging for developers who are familiar with the domain but have little or no

knowledge and experience in software development. Moreover, coding and/or configuring DT

components for different microprocessor architectures is time consuming.

We believe that applying a model-driven development (MDD) process including domain-

specific modeling (Kelly and Tolvanen, 2008; Medini and Boucher, 2019), and using a

domain-specific language (Kosar et al., 2016; Kosar et al., 2014; Nakamaru et al., 2019), may

eliminate the abovementioned problems and facilitate the creation of DT applications. Hence,

in this paper, we introduce a domain-specific modeling language (DSML), called DSML4DT,

which provides the MDD of DT software for the wide range of processor families and

kernels. In fact, DSML4DT is free of processor types and it can be used for creating DTs for

any architecture conforming to the international “Devicetree” specifications (Devicetree

Community, 2019). CPUs with both 32-bit and 64-bit addressing capabilities are supported by

ACCEPTED MANUSCRIPT

3

DTs. To name a few, DTs can be prepared for the processors and architectures such as ARC,

ARM, X86, PowerPC, Xtensa and also MicroBlaze soft processor; so it is possible to model

DT components corresponding to all these processors and architectures with using

DSML4DT.

Developers can visually model their software using DSML4DT’s graphical syntax which

conforms to the “Devicetree” specifications. DT models are validated inside the integrated

development environment (IDE) of DSML4DT and artifacts, all required to implement the

designed DT, are automatically generated via execution of the model-to-text transformations

defined inside DSML4DT. DSML4DT’s metamodel represents a platform-independent

metamodel of DTs and hence instance DT models conforming to this metamodel can be

converted to the DT configurations for different embedded system architectures. The related

MDD process is described in this paper. In addition, a comparative evaluation of using this

new language was performed inside one of the leading IT companies in Turkey which

produces DT-based intelligent transportation systems and manufactures bus fleet terminals.

We also discuss the results achieved from this evaluation.

The remainder of the paper is organized as follows: Section 2 gives the related work on

developing DT software. Section 3 briefly discusses DT structure. Syntax and semantics

definitions of DSML4DT are introduced in Section 4. A discussion of the MDD process

supported with DSML4DT is given in Section 5. The evaluation of the language is presented

in Section 6. Finally, we conclude the paper with Section 7.

2. Related Work

There are various recommendations in the literature for the generation of hardware driver

code. For instance, Katayama et al. (2000) propose generating driver code for Unix-like

systems. With using model-driven techniques, Chen et al. produce “Makefile” files for the

Linux kernel (Chen et al. 2014). Similarly, a number of driver code is generated for a single

platform in (King et al., 2012). Lecomte et al. (2011) describe rules to create UML models for

embedded systems with applying MDD for a multiple-input–multiple-output process.

However, all of these studies do not support DT configurations and generation of DT files.

Two recent studies (Neuendorffer, 2018; Jassi et al. 2018) consider the automatic

achievement of DT configurations from embedded system designs. Neuendorffer (2018)

ACCEPTED MANUSCRIPT

4

discusses the use of model-based approaches in the design of FPGA systems and states DTs

can be created from system designs. Although the related design flow is exemplified through

a case study, the automatic DT generation process is not given. Jassi et al. (2018) describe the

use of GRIP tool, to facilitate the integration of hardware blocks defining Intellectual Property

to System-on-Chips (SoCs). Like DSML4DT, GRIP is built on the Eclipse Modeling

Framework (EMF) (The Eclipse Foundation, 2013) and both tools have similar features in

terms of the creation of integrated circuit designs. Jassi et al. (2018) claim it is possible for

their code generator to generate DT source files if their software is run on Linux operating

system (OS), but no application example is found. In addition, the evaluations regarding the

completeness of automatically generated code and the measurement of the speed of the

software development process are not included. Finally, our DSML allows for the MDD of

components for many additional interfaces such as USB, Serial Peripheral Interface (SPI), and

Inter-Integrated Circuit (I2C).

When remaining DT software development studies are taken into consideration, the use of DT

for creating virtual machine and peripheral component interconnect interfaces (Nikkel 2016;

Devigne et al., 2017) and the logical structure of hardware configurations (Schüpbach et al.,

2012) are encountered, but there is no automatic DT software production in these studies. A

DT compiler is included inside “Altera SoC EDS” tool (RocketBoards, 2019). However, code

generation is only possible for a single kernel version of Linux and does not have a general

structure supporting different platforms. In addition to those efforts, both DTs and DT-based

configurations are used in various purposes, e.g. multi-device support within BTFRS Linux

file systems (Rodeh vd., 2013), support package optimization for microprocessors of some

motherboards acting as a gateway in IoT networks (Gioia et al., 2016), preparation of driver

terminals in public transportation (Arslan et al., 2017), management of interactive virtual

hydroelectric generating equipment scenarios (Li et al., 2018), construction of embedded

systems to be used in traffic sign identification (Farhat et al., 2019) and the production of real-

time health monitoring devices (Swaroop, 2019). However, none of these studies follow

MDD approaches during the implementation of required DTs.

3. DT Structure

Simply, a DT is a data structure that describes the configuration of a hardware. This structure

contains information about the many parts of the embedded system, such as the processor,

ACCEPTED MANUSCRIPT

5

memory, data paths and peripherals. The OS parses the DT structure during bootloading and

determines how to configure the microprocessor and whole embedded system. The DT

structure is also used to make decisions about device drivers to be installed.

The DT structure has a specific syntax starting with a node named root, represented by the “/”

character. Multiple child nodes can be created from each parent node. The nodes can

optionally include attribute values that contain additional data. The Device Tree Source (.dts)

file format is used to express device trees and these files can be edited by software developers.

The Device Tree Compiler Tool is used to convert DT descriptions in .dts format to the

Binary Device Tree Blob (.dtb) format required by the OS.

In Figure 1, a DT structure fragment from the definitions for CPU nodes running in an ARM

microprocessor system is shown as an example. The beginning of the DT root node is given in

line 1. Each node definition is located between the braces “{” and “}. The first child of the

root node is the “cpus” node whose definition is written between lines 2-45. The architecture

in here owns two processor cores, namely cpu0 and cpu1. Lines 6-37 include the definition of

cpu0, the first child of the cpus node. The second child, cpu1 is defined between lines 39-44.

For each processor core, information such as operating-points, clocks and clock-names need

to be added separately and manually by the developers. In addition to know the details of this

configuration, a developer should also deal with the specific syntax of these DT structures. It

is worth indicating that Figure 1 includes a simple DT structure example which covers only

the basic definitions of cpu components in a SoC configuration. A DT developer should also

know and insert domain-specific configuration for other components such as memory units,

communication channels and peripherals. An embedded system requires a large number of

such information to be written manually in DT syntax when developing the corresponding DT

software. Hence, the related development process is both time consuming and complicated for

DT developers.

ACCEPTED MANUSCRIPT

6

Figure 1: An example of DT structure

4. Syntax and Semantics of DSML4DT

The abstract syntax of DSML4DT language is defined with a metamodel developed according

to DT specifications given in (Devicetree Community, 2019). The preliminary version of the

metamodel is introduced in (Arslan and Kardas, 2018). This initial metamodel has been

revised and extended in this study to complete the component relations required especially on

SoC and peripheral DT descriptions. The metamodel is divided into five different viewpoints,

called Core, SoC, Aips_Bus, Spba_Bus and Peripheral. The placement of the meta-entities

inside these viewpoints is made according to DT usage in embedded systems. The metamodel

01 / { //The root Node
02 cpus { //Child of the root node
03 address-cells = <1>;
04 size-cells = <0>;
05
06 cpu0: cpu@0 { //First child of the cpus node
07 compatible = "arm,cortex-a9";
08 device_type = "cpu";
09 reg = <0>;
10 next-level-cache = <&L2>;
11 operating-points = <
12 /* kHz uV */
13 996000 1275000
14 792000 1175000
15 396000 1150000
16 >;
17 fsl,soc-operating-points = <
18 /* ARM kHz SOC-PU uV */
19 996000 1175000
20 792000 1175000
21 396000 1175000
22 >;
23 clock-latency = <61036>; /* two CLK32 periods */
24 clocks = <&clks IMX6QDL_CLK_ARM>,
25 <&clks IMX6QDL_CLK_PLL2_PFD2_396M>,
26 <&clks IMX6QDL_CLK_STEP>,
27 <&clks IMX6QDL_CLK_PLL1_SW>,
28 <&clks IMX6QDL_CLK_PLL1_SYS>,
29 <&clks IMX6QDL_PLL1_BYPASS>,
30 <&clks IMX6QDL_CLK_PLL1>,
31 <&clks IMX6QDL_PLL1_BYPASS_SRC> ;
32 clock-names = "arm", "pll2_pfd2_396m", "step",
33 "pll1_sw", "pll1_sys", "pll1_bypass", "pll1", "pll1_bypass_src";
34 arm-supply = <®_arm>;
35 pu-supply = <®_pu>;
36 soc-supply = <®_soc>;
37 };
38
39 cpu1: cpu@1 { //Second child of the cpus node
40 compatible = "arm,cortex-a9";
41 device_type = "cpu";
42 reg = <1>;
43 next-level-cache = <&L2>;
44 };
45 };

ACCEPTED MANUSCRIPT

7

is encoded with Eclipse Ecore (The Eclipse Foundation, 2013) and hence it is possible to

integrate the metamodel with various MDD tools based on EMF.

DSML4DT’s metamodel is composed of more than 70 meta-entities (corresponding to DT

components) and their relations. Due to space limitations of the journal, it is not possible to

discuss all meta-entities, and in here we only give the brief descriptions of the viewpoints.

Similarly, the partial Ecore diagram illustrating the Core viewpoint is shown only. However,

the whole metamodel, Ecore diagrams for all viewpoints and the complete specification of all

DSML4DT meta-entities and their relations can be found in the accompanying Mendeley data

repository (Dataset, 2019).

In the following, five viewpoints of DSML4DT (Core, SoC, Aips_Bus, Spba_Bus and

Peripheral) are briefly described. Elements and associations covered in each viewpoint are

indicated in the text with italics.

Core Viewpoint: Figure 2 shows the Ecore representation for this viewpoint. Element root is

the base node from which the entire system is produced. The root element is in “has-a”

relationship with other elements derived from the root. The processor and memory of the

embedded system are defined in this viewpoint. For multi-core processors, the necessary

derivations for each core unit are made from the cpus element. In addition, there are aliases

and chosen elements which do not have any hardware relations, and these elements own

abbreviations, definitions, and boot parameter transitions to be used in all DT structures.

SoC Viewpoint: This part of the metamodel describes the SoC integrated circuits. Parameter

settings of many SoC features such as sound, image, and timer are provided inside this

viewpoint. Moreover, the interrupt_controller element handles the generation and the

adjustment of all interrupts in the embedded system.

Aips_Bus Viewpoint: SoC peripheral components with low bandwidth communicate with SoC

units via Advance High Performance Bus to Internet Protocol (Aips) Bus interface in

embedded systems. Within Aips_Bus viewpoint, it is possible to model DT elements such as

caam, iomuxc, ldb, usb, fec, i2c, uart, pwm, flexcan, gpio, wdog, clks, usbphy and spba_bus.

Spba_Bus Viewpoint: In embedded systems, Shared Peripherals Bus Interface (SBPA) Bus is

used for communicating with some shared external units. This interface enables the

communication between the Smart Direct Memory Access core and the peripherals.

Sbpa_Bus viewpoint supports modeling DT structures such as spdif, esai, ssi and ecspi.

ACCEPTED MANUSCRIPT

8

Peripheral Viewpoint: Hardware units, which are not on SoC integrated circuit and connected

to SoC from the outside, are modeled in DSML4DT according to this viewpoint. Integrated

circuit peripherals with different audio and video codecs are defined. Peripheral elements like

clocks, battery, gpio_keys, sound, sound_spdif, sound_hdmi, lcd and backlight are generated

directly from the root element in the metamodel.

Figure 2: DSML4DT’s Core Viewpoint

We also provide a graphical concrete syntax which maps DSML4DT’s abstract syntax

elements to their graphical notations. In order to construct DSML4DT’s concrete syntax, we

benefited from the features of Sirius (The Sirius Project, 2016) modeling environment. Both

providing a tool for implementing a graphical editor from an Ecore metamodel and allowing

one to define dedicated editors including diagrams based on a viewpoint approach caused us

to build DSML4DT’s graphical modeling toolset on Sirius environment.

Graphical notations for the abstract syntax meta-elements were determined first and tied to the

domain concepts with using Sirius. Table 1 lists some important notations. A screenshot from

Sirius-based IDE of DSML4DT is given in Figure 3. It is possible to create model diagrams

ACCEPTED MANUSCRIPT

9

for each viewpoint (see left upper section in Figure 3). Model symbols, associations and

names can be seen in these diagrams. All editors for the viewpoints have a palette (seen at the

upper right of Figure 3). In here, the items specific for the concrete syntax of each DSML4DT

viewpoint are listed. Hence, developers can create DT models conforming to DSML4DT

specifications by simply drag-and-dropping required items from the palette.

Table 1: Some of the concepts and their notations provided for DSML4DT’s graphical

concrete syntax

Concept Notation Concept Notation

Root

Timer

Cpu

L2 Cache

Memory

Pwm

SoC

Flexcan

Interrupt

Controller
Gpio

Aips Bus

Wdog

Ipu

Spdif

Hdmi

Core
Esai

Hdmi Cec

Uart

Power

Lvds

Channel

Sound

Battery

ACCEPTED MANUSCRIPT

10

Figure 3: A screenshot from DSML4DT IDE

Palettes for the viewpoints have modeling elements specific for the related DSML4DT

viewpoint. For example, the palette section seen in Figure 3 currently includes modeling

elements only specific for the Core Viewpoint. However, some common modeling elements

can be found in different viewpoints. For example, the SoC element is both located in the

Core and SoC viewpoints. For this reason, a SoC node created in the Core viewpoint diagram

is automatically added to the SoC diagram. Thus, the consistency between the viewpoints of

the DT models is ensured. Such features are provided by the static semantics of DSML4DT.

Finally, at the bottom of the editor, a Properties section resides. In this section, all remaining

hardware properties pertaining for each modeled device element can be entered. Hence, all

model properties can be completed via this development tool. In Figure 3, this section

currently shows how the properties are entered for the selected model element (one cpu

ACCEPTED MANUSCRIPT

11

instance, called cpu0) in the diagram. To insert values for the properties of another DT model

element, this element located at the Modeling section can be clicked and hence its properties

are listed in the Properties section. DSML4DT IDE provides the interface for the completion

of all model elements’ properties defined according to Devicetree standard which leads to

completely generate DT definitions for the corresponding DSML4DT models. However,

some properties depend on the different types of peripheral integrated circuits and their

definitions may not be supported in the Devicetree standard, hence they can not be fully

modeled with DSML4DT. Such properties of these peripherals need to be added manually

into the generated definitions. For instance, let us consider an integrated circuit increasing the

number of GPIOs. This circuit works with SPI interface. Figure 4 shows the DT node

description prepared for this circuit. Code lines between 1-5 and 9-13 are auto-generated by

DSML4DT. However, the standard DT structure does not support some additional device

properties required for this circuit (shown in bold in Figure 4 between lines 6-8) and both

these non-standard properties and the corresponding values should be manually added to the

configuration.

Figure 4: An example of DT structure in which some parts are auto-generated by

modeling with DSML4DT while remaining is manually added to complete the

configuration.

Constraint-checks and static semantics controls are automatically made inside the

environment according to DSML4DT model validation rules. These rules were written with

using Acceleo Query Language (AQL) in the Sirius platform (AQL, 2018). EMF models can

be queried with AQL. Moreover, rules written with AQL bring strong model validation

including type checking at the validation time. AQL interpreter is used in Sirius to execute

written queries (validation rules) on EMF-compliant system models. For each DSML4DT

01 gpiom1: gpio@0 {
02 compatible = "microchip,mcp23s08";
03 gpio-cells = <1>;
04 gpio-controller;
05 reg = <0>;
06 mcp,spi-present-mask = <0x03>;
07 mcp,gpio-base = <300>;
08 mcp,spi-max-frequency = <10000000>;
09 interrupt-controller;
10 interrupt-parent = <&gpio6>;
11 interrupts = <11 4>;
12 interrupt-cells = <2>;
13 };

ACCEPTED MANUSCRIPT

12

viewpoint, we created validation rules in AQL syntax and they are ready to be used during

MDD of DTs. For instance, the following AQL rule checks whether at least one power

attribute is supplied for a gpio_keys instance inside a DSML4DT Peripheral viewpoint:

aql: self.power-> notEmpty ()

Following the “aql” command the rule starts after “:”. “self.power” uses the power attribute

value in the gpio_keys instance element. Then “->” specifies that this attribute value cannot be

empty by applying “notEmpty()” query. Similarly, execution of the following AQL rule

confirms the naming of each memory instance inside a DSML4DT Core viewpoint:

aql: self.name-> one (str | str.equals ('memory'))

In fact, developers do not need to know both the definition and the structure of these rules

since the rules are automatically applied on a DSML4DT instance model without any user

intervention and error messages are shown to the user inside the IDE when the model

validation fails.

The rules enable checking constraints such as compartment (e.g. DT memory and battery

elements can be created only from the root), number of relationships between DT model

elements (e.g. only one cpus element can be derived from root) and source and destination

elements in a relationship (e.g. battery can be created from the root but not vice versa).

Moreover, the constraint-checks also include some editorial features which assist the user in

the design process while creating the model, such as transition between viewpoints (e.g.

design SoC before Core model), unification for all elements (e.g. a root element created inside

Core is automatically added into Peripheral model), integrity of relationships and elements

inside all viewpoints (e.g. when a DT element is deleted, all its relations inside all DSML4DT

viewpoints are deleted automatically).

Moreover, validation of the DT models according to DSML4DT static semantics

specifications is also performed in the IDE. Inclusion of the mandatory elements (e.g. Model

Validation Rule: Peripheral_1 - At least one key element must be generated from the

gpio_keys) and cardinalities of the elements in the placeholders (e.g. Model Validation Rule:

Aips_bus_6 - One display_timings element must be in the aips_bus diagram) are controlled.

Finally naming conventions are also validated (e.g. Model Validation Rule: Core_10 - The

memory element should be named as “memory”). Additional examples of these validation

ACCEPTED MANUSCRIPT

13

rules are available in (Dataset, 2019). Use of these rules and appearance of the validation

messages are exemplified in the next section.

In order to generate executable DT files from DSML4DT models, we defined a series of

model-to-text (M2T) transformation rules by using Acceleo (Acceleo, 2018). Acceleo

provides a tool as an Eclipse plug-in where M2T transformations can be written, parsed,

checked, and directly executed inside the IDE. It enables the definition of code generation

rules and also supports the interpretation of these rules. The semantics of DSML4DT

language is provided over the application of these rules at run time on DT models conforming

to DSML4DT syntax. Hence, the generation of DT source code from DSML4DT models is

possible. The generated code for DTs can be directly executed within the embedded OS

environment. Examples of the written M2T rules can be found in (Dataset, 2019).

5. Model-driven DT Development Methodology based on DSML4DT

Features of DSML4DT language discussed in Section 4 can be used to constitute a model-

driven DT development methodology in which developers can visually design and implement

their DT-based embedded systems. The proposed model-driven methodology includes system

modeling and automatic code generation for exact DT implementations.

In the system modeling step, a developer uses the fully functional graphical IDE of

DSML4DT to design the system-to-be-developed. DSML4DT’s concrete syntax covers 5

viewpoints and hence for each viewpoint, a modeling palette is provided. The tool does not

only offer a computer-aided design for system modeling, but also supports various automatic

constraint checks and semantics controls via model validation which lead the designers to

create accurate models. The main outcome of this step is DT software models conforming to

DSML4DT specifications.

The next step is the code generation and completion for DT software. The output of the

previous step will be the input for the execution of this step. In here, DT models are converted

into DT code for the targeted embedded system. The M2T transformation rules are

automatically executed on the DT instance models and code is obtained for the DT

implementation. The developer does not need to know about both the context of M2T rules

and their execution details. (S)he only selects the code generation feature over the IDE. The

ACCEPTED MANUSCRIPT

14

result of the automatic code generation step is DT source files. These files can be used later in

the OS where they are required.

It is worth indicating that DT code is generated according to DSML4DT instance models

created by the DT developers. In fact, each instance model consists of more than CPUs and

memories, i.e. it is possible to model a SoC with many sound and video units, communication

interfaces and additional peripherals. In addition to the visual design of a SoC, DSML4DT

IDE enables the inclusion of additional properties specific for the related integrated circuits.

DSML4DT syntax is based on the international “Devicetree” specifications (Devicetree

Community, 2019) and abstract from a specific processor or a hardware system. As discussed

in the introduction, currently it is possible to produce hardware configurations for various

processors and architectures with using Devicetree specifications; hence DSML4DT supports

the MDD of DTs pertaining to all these processors. Same is valid for future processors

supporting Devicetree specifications. DT developers can model SoCs including these new

processors again with DSML4DT and DT code for these new hardware can automatically be

achieved from these instance models.

In the following subsection, development of a DT software for a dual core embedded system

is discussed in order to provide some flavor of using above MDD methodology.

5.1. Development of a DT software for a bus driver terminal

The device, for which a DT software is required, is a driver terminal (computer) used in

public transportation buses. This device can be supported with Android or Linux OS where

DT structure can be used. The device is used by the bus drivers and it can perform operations

such as reading RF cards, monitoring environment temperature and making voice

announcements, e.g. inside a bus. The hardware of this driver terminal (Figure 5) is designed

and manufactured by Kentkart Co. (Kentkart, 2019).

ACCEPTED MANUSCRIPT

15

Figure 5: The driver terminal device

The driver terminal device is a computer having an i.MX6 Dual Lite series micro-controller

with ARM dual core CPU. The device also has 1 GB RAM and 4 GB storage unit. Modules

such as SPI interfaced memory, Secure Digital interfaced MMC, gigabit Ethernet, Real Time

Clock and USB interface are all available for the multimedia system support. A power

management controller is used in the device. The ignition and odometer signals of the vehicle

can be used in the device. Hard disk support of the system is provided by the SATA interface.

In order to access the CAN in the vehicles, the microprocessor CAN interface is used. There

are also camera interfaces and an audio converter integrated circuit that can work with I2S

interface for audio output. 24-bit LCD is supported with RGB or LVDS interfaces, and LCD

backlight supply circuit is located in the device. There is an RF card read/write circuitry and

the Secure Access Module is available for safe RF access. Accelerometer sensor, EEPROM,

temperature sensor and digital potentiometer are also included. These units are controlled by

the I2C interface. There is a buzzer circuit for warnings. Finally, the device has GPS, GSM

and Wi-Fi modules.

For this device, all hardware parts, briefly introduced above, need to be described in the DT

layer of the embedded system architecture. Its DT software is basically located between

hardware and OS drivers and DT files are compiled independently from OS kernels. All

hardware parameters of the terminal pass through from DT binaries to OS kernels during the

boot up stage of the embedded system.

In this example, DTs for the driver terminal described above are generated with using

DSML4DT. Conforming to the proposed MDD methodology, we start by creating system

models according to 5 viewpoints of DSML4DT. For instance, Figure 3 shows the Core

ACCEPTED MANUSCRIPT

16

model designed for this hardware. First, a DT root node instance is created by drag-and-

dropping, and then memory, chosen, and aliases nodes, mandatory for DT structure, are

added. The driver computer has a dual core processor, so 2 cpu nodes are created. In addition,

SoC node from which SoC features will be generated is created here. Hardware dependent

properties of all nodes are also entered during this stage.

For another example, Figure 6 shows the Aips_Bus model designed for the driver terminal.

Many features of the device and support of different interfaces are provided within this

viewpoint. There are 2 Aips_Bus lines in the device. These lines are modeled with aips1 and

aips2 nodes. 7 gpio, 4 pwm, 2 flexcan, 2 usbphy and 2 wdog nodes are produced from the

aips1 node. Also clks, iomuxc, ldb and spba_bus nodes are created from aips1. Remaining

SoC, Spba_Bus and Peripheral models created for the specifications of the driver terminal can

be found in (Dataset, 2019) with their discussions.

The validation of the designed model is performed inside IDE according to the constraints and

rules previously discussed in Section 4. During this automatic validation process, error

messages are shown to the developer if there are any violations. Figure 7 illustrates how

developers are notified if some errors are encountered during the validation of a Core model.

Figure 6: Aips_Bus model of the driver terminal designed inside DSML4DT IDE

ACCEPTED MANUSCRIPT

17

Figure 7: Some validation examples for the driver terminal DT model

After the design and validation of models are completed, DSML4DT’s code generator works

on these models and hence produces DT code ready to be executed. Figure 8 includes a

fragment from the auto-generated DT code for the device terminal. M2T transformations are

applied on the Core model of the driver terminal for root, cpus and cpu instances. Lines 1-3 in

Figure 8 show the generated code for the root DT node. DSML4DT’s code generator

determines each root instance and the corresponding “model” and “compatible” attributes and

then produces the required code in DT syntax. Similarly, code for cpus, cpu0 and cpu1 DT

elements are generated between lines 5-7, lines 9-19 and lines 21-26 respectively. For this

case study, a total of 906 lines of executable DT code is automatically generated from the

DSML4DT models designed for the driver terminal. Whole code is available again in

(Dataset, 2019).

ACCEPTED MANUSCRIPT

18

Figure 8: An excerpt from the generated DT file

After the DT file is produced, it is ready for processing in an OS kernel. DT file is copied to a

directory in the kernel. This directory is predefined and fixed in the kernels. The DT software

stored in this file is in .dts format and text-based. Then, this .dts file is compiled by the DT

compiler and a .dtb file is created in binary format as previously discussed in Section 2 of this

paper. That file is now suitable for the execution in the kernel. When the OS is initialized, the

.dtb file is parsed and the necessary hardware parameters are taken from this file. Hardware

components (CPU, memory, peripherals, etc.), whose descriptions are received from this file,

can now be used and managed by the kernel. Based on the current DSML4DT

implementations, we see that creating DTs with DSML4DT does not affect both the way and

the speed of processing and managing these files inside OS kernels.

ACCEPTED MANUSCRIPT

19

6. Evaluation

In order to determine the feasibility of using DSML4DT for the development of DT software,

a comparative evaluation was performed. For this evaluation, we adopted the evaluation

framework proposed in (Challenger et al., 2016) which enables the assessment of language

constructs and the use of DSMLs according to various dimensions and criteria. The scope of

our evaluation here covers Development Sub-dimension (under Execution Dimension) and

User Perspective Sub-dimension (under Quality Dimension) of this framework. Therefore, the

evaluation criteria pertaining to these dimensions, called Output Performance (Generation

Performance), Development Time Performance, and Qualitative Analysis by a questionnaire,

are taken into consideration. We revised these dimensions and criteria to make them

meaningful and relevant for evaluating DSML4DT. We aimed at finding answers to the

following research questions (RQs)?

RQ1: To what extent does the use of DSML4DT allow the automatic generation of DT

components?

RQ2: Does the use of DSML4DT reduce the DT development time?

RQ3: What are the pros and cons of using DSML4DT from DT developers’ perspective?

To find answers for the above RQs, our evaluation consists of two parts: 1) quantitative

analysis, including generation performance and development time evaluations 2) qualitative

assessment within user perspective.

The whole evaluation was carried out in Kentkart Ege Elektronik Company (shortly Kentkart)

(Kentkart, 2019). Kentkart is one of the leading IT companies in Turkey which produces

various intelligent transformation system solutions for the automated fare collection, vehicle

tracking, real-time passenger information, route planning and on-board video surveillance.

Currently, mass-transit systems of Kentkart are being used in more than 25 cities of Turkey

and more than 10 worldwide locations in countries including Hungary, Macedonia, Pakistan,

Poland, Serbia, United Arab Emirates and United States. Kentkart also manufactures

hardware such as ticket vending machines, turnstile validators and bus driver terminals. Huge

amount of software for all these devices and information systems are DT-based and/or

configured with DT structures.

ACCEPTED MANUSCRIPT

20

Five software developers working in the R&D center of the company were voluntarily

participated in our study as the evaluators. These developers were first asked to develop DT

software for four different systems by using their conventional DT development approach

followed inside the company. Later, they were asked to apply the model-driven DT

development methodology covering the use of DSML4DT to develop the same systems. All

evaluators have at least a B.Sc. degree in computer / electrical engineering. Two of them also

have M.Sc. degree in electrical engineering and pursuing Ph.D. in information technologies at

the time of this study conducted. All of the evaluators are experts in embedded software

development with varying experience from 5 to 11 years. Specifically, they have an average

of 4 years of experience on design and implementation of DT-based systems. None of them

previously used MDD techniques during DT implementations.

The evaluation process has the following stages: First, all evaluators received an MDD

review. This step ensures countervailing their level of familiarity to software modeling. All

evaluators received an introduction to DSML4DT language and its IDE for modelling and

code generation. Then, a briefing on the case studies consisting of developing different DT

systems was given to evaluators. Finally, the evaluators developed the required DTs by going

through steps of analyzing use cases, designing/modelling systems, implementing/generating

code and testing. Elapsed times were recorded for each developer and each step. In addition,

artifacts of all experiments were evaluated to find out especially the generation performance

of DSML4DT.

DT software development for four different systems with varying complexities was taken into

consideration as the use cases. One of these systems was the bus driver terminal previously

discussed in Section 5. Remaining DT-based systems were required to be developed and

installed on three different hardware all manufactured by Kentkart. These are briefly

described below:

Network Video Recorder (NVR): This device includes an i.MX53 series single core processor,

1 GB RAM, 512 MB NAND Flash and network units. This device does not have any

peripheral that plays video or audio files. There is no LCD and touchscreen interfaces for the

user interaction. The device has Linux OS.

Validator: This device is used in fare collection systems for public transportation. Usually RF

cards are used to collect fees on public transportation via this device. It includes an Intel

PXA270 series single core processor, 256 MB RAM, 128 MB NAND Flash and network

ACCEPTED MANUSCRIPT

21

units. Unlike NVR, the validator has additional features such as RF card read/write and LCD

support. It has Linux OS.

Multimedia Player: This device meets multimedia needs of public transportation. Basically,

the device has LCDs via HDMI interface and provides audio output for announcements in

buses. It also supports SATA interface, GSM, GPS and owns serial ports. The device includes

an i.MX6 Quad series quad core processor, 1 GB RAM and 8 GB EMMC storage. There is

optional LCD support via LVDS interface. It works on Android OS.

6.1. Results and Discussion

6.1.1. Quantitative Analysis

This analysis consists of measuring the generation of artifacts (called generation

performance), and the time saved during whole development process (called development

time performance).

Generation Performance:

DSML4DT’s generation performance was calculated to answer RQ1. For this purpose, the

comparisons between the automatically generated code and delta code added to complete the

system are made. All evaluators developed their systems required for each case study with

using DSML4DT to generate DT code and then completed this code to build the DT system.

Performance evaluation is fulfilled by comparing the percentage of artifacts automatically

generated and manually developed. These artifacts are Lines of Code (LoC) of DT files

required for the systems namely, Driver Terminal, Multimedia Player, NVR and Validator

devices. Measurement results are shown together in Figure 9. The LoCs listed for each case

study is the average of all developers in the evaluator group. For instance, all evaluators

obtained auto-generated code depending on their DSML4DT models for the driver terminal

case study with varying ratios. 76.31% LoC is their average. The evaluators needed to

manually add %23.69 LoC on average to complete their driver terminal DT software. The

Overall Average is the LoC average obtained from all case studies. All measurement results

for each developer and for each case study can be found in (Dataset, 2019).

According to the results in Figure 9, the average generated LoC rate is 75.52% for the whole

evaluation. Generated LoC varies between approximately 71% and 83% for different case

ACCEPTED MANUSCRIPT

22

studies. The most important reason for these variations are the device architectures used in the

case studies. For example, Validator device has many DT elements whose modeling are

directly supported by DSML4DT, and hence 83% of its DT software is automatically

generated. However, in the architecture of the NVR device, there exist many software

components apart from DT elements, hence the average LoC decreases to 71%. In addition,

both the developers’ knowledge and experience on each device and the quality of models

created by the developers naturally have effect on the generated LoCs. In order to keep this

effect minimum, we conducted this multi-case evaluation with varying DT development

complexities instead of only one use case. Thus, a rate of 75.52% LoCs for the auto-

generation with just using DSML4DT is quite high taking into consideration the variations

encountered both in the needs of the DT applications for each case study and the hardware

architectures of used embedded systems.

Figure 9: DSML4DT’s generation performance

Development Time Performance:

In order to answer RQ2, we compared and analyzed the times which were recorded during

Kentkart engineers developed the requested DT systems with using the new MDD process

(Experiment A) and their conventional software development process (Experiment B).

76.31
71.59 70.97

83.19
75.52

23.69
28.41 29.03

16.81
24.48

0

10

20

30

40

50

60

70

80

90

Driver Terminal Multimedia Player NVR Validator Overall Average

R
at

io
 o

f
th

e
A

rt
if

ac
ts

DSML4DT’s Generation Performance

Automatically Generated Artifacts Manually Added (Delta) Artifacts

ACCEPTED MANUSCRIPT

23

Development times were recorded separately for all developers including all steps of DT

development. The average times for each of these phases were calculated in Experiment A

and Experiment B. Obtained results are presented in Figure 10 to facilitate comparing peer

steps. Individual times can be found in (Dataset, 2019). The followings can be deduced for all

steps of the development processes based on these results:

Analysis: The analysis step for each use case is not dependent on any tool or platform. Hence,

the developers spent almost similar times in both Experiment A and Experiment B. Actually,

this step is just dependent on the complexity of the embedded device’s DT structure.

Therefore, the difference between times can be ignored.

Design/Modelling: Elapsed time for modeling in Experiment A is slightly more than design in

Experiment B. In addition to graphical modeling, DSML4DT has static semantics checks to

avoid semantical errors which probably take more time to correct them later. Thus, modeling

with DSML4DT extends the length of the design time slightly. This kind of detailed

modelling was not considered by the developers during Experiment B. However, that

additional time spent in modeling during Experiment A will lead to gain more detailed and

accurate code generation in the next step.

Implementation/Generation: This is the step in which the developers achieved the most time

saving with using DSML4DT. In Experiment A, DT code was obtained automatically for all

use cases. In Experiment B, developers wrote required code manually based on their design.

DSML4DT succeeded in the automatic generation of DT code by utilizing the products

acquired from the detailed modeling. However, in Experiment A, the developers still needed

to complete the generated code by manually adding delta code to have a fully executable

program. Consequently, the implementation time required in Experiment B is about 5 times

more than the generation and implementation time elapsed in Experiment A.

Test: Similar to the previous step, elapsed time in Experiment A for system tests was

conspicuously lower than Experiment B. Developers tried to find syntactic and semantic

errors of the DT programs. In Experiment B, developers needed to find errors in the entire

code. In Experiment A, developers generally dealt only with delta code added, which is much

less than the generated code. Because generated code constitutes most of the error-free and

almost-ready final code which does not need to be re-validated. Hence, the time required to

find errors during Experiment A is nearly 4 times less than Experiment B.

ACCEPTED MANUSCRIPT

24

After completion of testing, all written DTs for all use cases were ready to be executed inside

all targeted embedded systems. Hence, developers completed the creation of the DT

components required for Driver Terminal, NVT, Validator and Multimedia Player systems.

This holds for both experiments (A and B) although elapsed times for this step varied

according to the production mechanism of DT components (with or without using

DSML4DT) as discussed above.

Total Time: The total average development time elapsed in Experiment A is around 112

minutes when all case studies are considered. This time for Experiment B is around 235

minutes. Thus, developers completed the whole development process in Experiment A

approximately 2 times faster than in Experiment B due to using DSML4DT.

Figure 10: Comparison of the times elapsed during system development

6.1.2. Qualitative Assessment

Feedbacks, gained from the developers who experienced DSML4DT, were assessed to answer

RQ3. For this assessment, a questionnaire was used which basically have 2 parts. In the first

part, 26 questions were asked to the evaluators in Kentkart to assess their experience on using

DSML4DT from different perspectives. To prepare this scoring part of the questionnaire, the

Framework for Qualitative assessment of Domain-specific Languages (FQAD), introduced in

28.2
45.95

18.5 19.65

112.35

28.9 38.2

91.15
77.3

235.35

0

50

100

150

200

250

300

Analysis Design/Modelling Implementation/
Generation

Test Total

Ti
m

e
(M

in
u

te
s)

Development Time Performance

Development Times elapsed in Experiment A (using DSML4DT)

Development Time elapsed in Experiment B (without using DSML4DT)

ACCEPTED MANUSCRIPT

25

(Kahraman and Bilgen, 2015), was adopted and customized to the DSML4DT specifications.

These questions were scored by the participants in the range of 1~5. Questions in this section

are categorized into 10 different sections for evaluating a DSML: Functional Suitability,

Usability, Reliability, Maintainability, Productivity, Extensibility, Compatibility,

Expressiveness, Reusability and Integrability. In the second part of the questionnaire, 6 open

ended questions were asked to the evaluators to criticize using DSML4DT. The whole

questionnaire and all answers received from all evaluators are available at (Dataset, 2019).

Assessment according to Scored Questions:

The average scores received from the evaluators for the first part of the questionnaire are

given in Figure 11. As can be seen, DSML4DT got scores ranging from 4 to 5 according to all

assessment categories. The grand average of scores for all responses is 4.64 which is quite

high. Hence, this result can be considered as one of the success indicators of the designed

language.

Although average scores obtained for all categories are high, prominent features of

DSML4DT for this assessment are its functional suitability, compatibility and reusability.

Within this context, it seems that the evaluators agreed on DSML4DT’s all-embracing model

for DT structures and they found DSML4DT mostly suitable for the needs of various

embedded system development. The scores also showed the evaluators thought DSML4DT

promoting programming productivity. Moreover, DSML4DT was found compatible with DT

specifications and hence DT models conforming to DSML4DT can be easily utilized during

development. Finally, the evaluators confirmed DSML4DT’s power on expressing DT

structures and its language constructs can be re-usable for various DT applications.

ACCEPTED MANUSCRIPT

26

Figure 11: Scores according to assessment categories

Assessment according to Open-Ended Questions:

In the second part of the questionnaire, following questions were asked to the developers to

get their feedbacks:

1. Does DSML4DT make DT software development easier?

2. Do you find DSML4DT useful for the development of DT-based embedded system

software?

3. Do you think the DSML4DT structure is strong enough to model overall DT structure?

4. Do you think the DSML4DT IDE is easy to use?

5. Are there any difficulties you encountered while using DSML4DT? If so, do you have any

suggestions to solve it?

6. Please write your suggestions and other comments for improving DSML4DT's features.

In answers for the first question, all evaluators agreed that DSML4DT simplifies DT software

design and speeds up the development processes. For the second question, the evaluators

found DSML4DT feasible while some of them specifically indicated visual modeling with

DSML4DT facilitates embodying conceptual DT designs. Considering the third question,

4.9
4.6

4.8

4.3

4.7
4.4

4.8
4.6

5

4

4.64

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sc
o

re
 (

1
 -

5
)

Questionnaire Results by Categories

ACCEPTED MANUSCRIPT

27

majority of the evaluators stated built-in modeling brought by the IDE is very strong in

support the sustainability of system development, i.e. DT models can be modified easily for

changing hardware configurations. In all answers given to the fourth question, it seems the

evaluators agreed that the IDE provides a simple and comprehensive design where users do

not spend much effort on preparing DT programs.

In the fifth question, the problems encountered during the use of DSML4DT were asked. The

evaluators stated that they do not encounter major problems. However, an evaluator said that

installing the IDE for different computers is hard and time-consuming. We determined this

difficulty originates from the configuration mismatches between the underlying Sirius

platform and the setup of these computers. A detailed study has been carried out for this

suggestion and a method of transporting DSML4DT IDE with underlying Eclipse Sirius

platform as a software bundle has been derived. The installation of this new bundle now fixed

this issue. Only two evaluators pointed out that migrating from classical software

development methods into MDD came a little bit confusing at first and additional time is

needed for adopting such approaches. Nevertheless, in their responses, the same evaluators

also confirmed the features brought by DSML4DT and agreed on this new language facilitates

the construction of DTs.

Some valuable suggestions were received for the sixth question. For example, an evaluator

suggested to integrate modeling both DT structures and OS drivers. In fact, such an

integration can be easily made inside DSML4DT’s IDE when meta-entities pertaining to OS

drivers are added into DSML4DT metamodel. For this purpose, a collaborative work with

Kentkart engineers has been recently initiated on extending the metamodel considering Linux

driver specifications. Another developer suggested highlighting the parts of the auto-

generated DT programs where possible additions are needed. Considering this suggestion,

DSML4DT’s code generation process now produces an additional document informing which

parts of the generated code need to be completed and marks the related code.

6.2. Threats to the validity

As with any evaluation study, there are some threats to the validity of the conducted

evaluation. First, a relatively limited number of developers could participate in the

assessment. However, DT software development in embedded systems is a specific field and

the number of experts in this field is rare. Moreover, we paid attention on conducting this

evaluation only with developers who actively implement commercial DT-based embedded

ACCEPTED MANUSCRIPT

28

systems in the industry. As indicated at the beginning of this section, the developers

participated in this study have significant experience on industrial scale DT development and

we believe that both their experience and feedbacks contributed much on the evaluation of

DSML4DT. Length and comprehensiveness of multi-case studies also affected the number of

volunteers since the volunteer participants were requested to develop four different embedded

software completely by following their conventional DT development approach first and then

they had to repeat the development of each of these systems also with using DSML4DT.

Nevertheless, the number of our participants is satisfying considering Nielsen’s scale

(Nielsen, 2012) for usability studies.

Second, single evaluator group was used instead of two different groups, which could pose a

threat to the execution phase. In our previous studies (Yildirim and Kardas, 2014; Kardas et

al., 2017; Kardas et al., 2018) for other domains, we experienced using both single and double

evaluator groups. Using a single group may raise the risk that the DT development experience

without using DSML4DT can be reflected into MDD with using DSML4DT (or vice versa)

when the same system is to be developed twice. Using two groups may minimize this risk.

However, in case of two groups, the qualitative evaluation based on the user feedbacks will

not be completed in a fruitful way since the groups with or without using DSML4DT will be

different. For the questionnaire-based comparison, it is crucial that a single group implements

the same DT software with or without using DSML4DT. There is also the difficulty of

creating two homogeneous groups which have almost same level of domain knowledge,

experience and skills.

Finally, the choice of case studies may have an impact on the results. In order to mitigate this

risk, instead of a single system development, multi-case studies with varying complexities

were conducted. Rather than being trivial examples, multi-case studies herein consider actual

embedded system DT implementations in a company operating in the relevant industry.

7. Conclusion

A DSML, called DSML4DT, for the MDD of DT software has been introduced in this paper.

The difficulty of creating DT source files can be reduced and the necessity of mastering

microprocessor-specific hardware while developing DTs can be eliminated by using

ACCEPTED MANUSCRIPT

29

DSML4DT. After DT models are created, DT files can be generated automatically inside

DSML4DT IDE.

A comparative evaluation of using DSML4DT was performed inside an IT company

producing DT-based intelligent transportation systems. The results showed that approximately

76% of DT structures belonging to the hardware with different complexity can be obtained

automatically only through modeling with DSML4DT. The new MDD process reduced the

time elapsed for implementing software to half. Developers adopted the language particularly

in terms of functional suitability, compatibility and reusability. The new DT software

development process supported with DSML4DT is now being used in the company.

DSML4DT language and IDE is available with including the required installation instructions

at (Dataset, 2019).

In our future work, we aim at automatic integration of specific OS device drivers into

DSML4DT models. Hence, custom driver definitions can be made available inside the

graphical syntax of DSML4DT to the developers for specific devices and OS.

Acknowledgement

This work is funded by the Scientific and Technological Research Council of Turkey

(TUBITAK) under grant 117E553. We would like to thank all staff in Kentkart Company for

their valuable collaboration during the evaluations performed in this study and the directorate

of Kentkart for their permission on conducting the evaluation studies.

References

AQL. 2018. “Acceleo Query Language”.

https://www.eclipse.org/acceleo/documentation/aql.html (last access: November 2019)

Acceleo. 2018. “Acceleo Tool”. https://www.eclipse.org/acceleo/ (last access: November

2019)

Arslan, S. and Kardas, G., Modeling Device Tree Software, In: Proc. 12th Turkish National

Software Engineering Symposium, CEUR Workshop Proceedings, 2201, 2018, 1-12

ACCEPTED MANUSCRIPT

30

Arslan, S., Turk, E. and Kardas, G., A Study on the Use of Device Tree Structures for

Embedded Software Development, In: Proc. 2nd International Conference on Computer

Science and Engineering, 2017, 882-887

Challenger, M., Kardas, G., Tekinerdogan, B. 2016. “A systematic approach to evaluating

domain-specific modeling language environments for multi-agent systems”, Software Quality

Journal, 24(3):755-795.

Chen, H., Godet-Bar, G., Rousseau, F., Petrot, F. 2014. “Device driver generation targeting

multiple operating systems using a model-driven methodology”, In proc. 25th IEEE

International Symposium on Rapid System Prototyping, 30-36.

[dataset] (Dataset, 2019) Dataset for: DSML4DT: A domain-specific modeling lan-guage for

device tree software, Mendeley Data, v1, 2019, https://doi.org/10.17632/6d9nv4gk24.1 (last

access: December 2019).

Devicetree Community. 2019. “The Devicetree Specification”. https://www.devicetree.org/

Devigne, C., Brejon, J.-B., Meunier, Q., L., Wajsbürt, F. 2017. “Executing secured virtual

machines within a manycore architecture”, Microprocessors and Microsystems, 48:21-35.

Farhat, W., Sghaier, S., Faiedh, H., Souani, C. 2019. “Design of efficient embedded system

for road sign recognition”, Journal of Ambient Intelligence and Humanized Computing,

10(2):491-507.

Gioia, E., Passaro, P., Petracca, M. 2016. “AMBER: An advanced gateway solution to

support heterogeneous IoT technologies”, In proc. 24th International Conference on Software,

Telecommunications and Computer Networks, 1-5

Jassi, M., Hu, Y., Mueller-Gritschneder, D., Schlichtmann, U. 2018. “Graph-Grammar-Based

IP Integration (GRIP)—An EDA Tool for Software-Defined SoCs”, ACM Transactions on

Design Automation of Electronic Systems, 23(3), Article 40:1-26

Kahraman, G., Bilgen, S. 2015. “A framework for qualitative assessment of domain-specific

languages”, Software & Systems Modeling, 14(4):1505-1526.

Kardas, G., Bircan, E. and Challenger, M., Supporting the platform extensibility for the

model-driven development of agent systems by the interoperability between domain-specific

modeling languages of multi-agent systems, Comput. Sci. Inf. Syst. 14 (3), 2017, 875-912

ACCEPTED MANUSCRIPT

31

Kardas, G., Tezel, B. T. and Challenger, M., Domain-specific modelling language for belief-

desire-intention software agents, IET Software 12 (4), 2018, 356-364.

Katayama, T., Saisho, K., Fukuda, A. 2000. “Prototype of the device driver generation system

for UNIX-like operating systems”, In proc. International Symposium on Principles of

Software Evolution, 302-310.

Kelly, S., Tolvanen J.-P. 2008. Domain-specific Modeling: Enabling Full Code Generation.

John Wiley & Sons

Kentkart. 2019. Kentkart Automatic Fare Collection & Vehicle Tracking Systems,

http://www.kentkart.com/en (last access: November 2019)

King, M., Dave, N., Arvind. 2012. “Automatic generation of hardware/software interfaces”,

ACM SIGPLAN Notices, 47(4):325-336.

Kosar, T., Mernik, M., Gray, J., Kos, T. 2014. “Debugging measurement systems using a

domain-specific modeling language”, Computers in Industry, 65(4):622-635

Kosar, T., Bohra, S., Mernik, M. 2016. “Domain-Specific Languages: A Systematic Mapping

Study”. Information and Software Technology, 71:77-91

Lecomte, S., Guillouard, S., Moy, M., Leray, P., Soulard, P. 2011. “A co-design methodology

based on model driven architecture for real time embedded systems”, Mathematical and

Computer Modelling, 53(3-4):471-484

Li, B., Bi, Y., He, Q., Ren, J., Li, Z. 2018. “A low-complexity method for authoring an

interactive virtual maintenance training system of hydroelectric generating equipment”,

Computers in Industry, 100:159-172.

Madieu, J. 2017. “The Concept of a Device Tree”, 139-166. Linux Device Drivers

Development: Develop customized drivers for embedded Linux. Packt Publishing

Medini, K., Boucher, X. 2019. “Specifying a modelling language for PSS Engineering–A

development method and an operational tool”, Computers in Industry, 108:89-103.

Nakamaru, T., Ichikawa, K., Yamazaki, T., Chiba, S. 2019. “Generating fluent embedded

domain-specific languages with subchaining”, Journal of Computer Languages, 50:70-83.

ACCEPTED MANUSCRIPT

32

Neuendorffer, S. 2018. “FPGA Platforms for Embedded Systems”, In Nicolescu, G.,

Mosterman, P. J. (Eds.): Model-Based Design for Embedded Systems, CRC Press, 351-379.

Nielsen, J. 2012. “How many test users in a usability study?”. Nielsen Norman Group 4(6),

https://www.nngroup.com/articles/how-many-test-users/ (last access: November 2019)

Nikkel, B. 2016. “NVM express drives and digital forensics”, Digital Investigation, 16:38-45.

Rocketboards. 2019. “Golden System Reference Design”.

https://rocketboards.org/foswiki/view/Documentation/DeviceTreeGenerator (last access:

November 2019)

Rodeh, O., Bacik, J., Mason, C. 2013. “BTRFS: The Linux B-Tree Filesystem”, ACM

Transactions on Storage, 9(3), Article 9:1-32

Schüpbach, A., Baumann, A., Roscoe, T., Peter, S. 2012. “A Declarative Language Approach

to Device Configuration”, ACM Transactions on Computer Systems, 30(1), Article 5:1-35.

Swaroop, K. N., Chandu, K., Gorrepotu, R., Deb, S. 2019. “A health monitoring system for

vital signs using IoT”, Internet of Things, 5:116-129

The Eclipse Foundation. 2013. Eclipse Modeling Framework,

https://www.eclipse.org/modeling/emf/ (last access: November 2019)

The Sirius Project. 2016. The Eclipse Sirius Modelling Project. http://www.eclipse.org/sirius/

(last access: November 2019)

Yildirim, O. and Kardas, G., A multi-agent system for minimizing energy costs in cement

production, Comput. Ind. 65 (7), 2014, 1076-1084

