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Abstract 

Device trees (DTs) provide description of devices and peripherals inside an embedded system 

with node specifications. However, developers mostly encounter difficulties in creating DT 

applications due to DT syntax different from the well-known general purpose programming 

languages. Moreover, both development and configuration of DT software components 

regarding different microprocessor architectures can be very hard and time-consuming for 

many embedded system developers. In order to eliminate these difficulties, we introduce a 

domain-specific modeling language, called DSML4DT, which provides the model-driven 

development (MDD) of DT software for the wide range of processor families. The evaluation 

of using DSML4DT was performed inside a company producing intelligent transportation 

systems. The comparative evaluation results showed that approximately 76% of DT structures 

can be obtained automatically only through modeling with DSML4DT. Comparing with the 

software development process currently followed in the company, the new MDD process 

reduced the time elapsed for implementing a DT software to half. Finally, feedbacks from the 

developers confirmed that they adopted the language particularly in terms of functional 

suitability, compatibility and reusability. 
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1. Introduction 

A Device Tree (DT) is a data structure that allows the identification of physical device 

components of embedded system hardware with nodes (Madieu, 2017). Configurations based 

on DTs can be applied during the development of embedded system software for various 

devices e.g. point of sales, mobile phones, automated fare collectors, network equipments, 

medical devices, bus driver terminals, vehicle trackers and home automation products. DTs 

are used within standards such as "Open Firmware" and "Power Architecture Platform 

Requirements", providing a complete technical description of hardware components 

(Devicetree Community, 2019). DT structure allows required peripheral operations to be 

performed without touching the core source code (e.g. (Devigne et al., 2017), (Li et al., 2018), 

(Jassi et al., 2018)). However, it is hard to implement DT structures, especially in the 

development of systems that operate in a large number of different microprocessor 

architectures due to need for repeating the same DT configuration. 

Moreover, embedded system software developers may find it difficult to learn, prepare and 

use DT source files that are text-based and have a structure different from the syntax of 

existing programming languages (Arslan and Kardas, 2018). Each new platform-specific file 

to be used for DT implementations must be prepared separately and from scratch. In these 

files, blocks are coded in DT syntax according to hardware parameters used in the system. 

Additionally, the developer must know the microprocessor-specific hardware. Preparing these 

files is also challenging for developers who are familiar with the domain but have little or no 

knowledge and experience in software development. Moreover, coding and/or configuring DT 

components for different microprocessor architectures is time consuming. 

We believe that applying a model-driven development (MDD) process including domain-

specific modeling (Kelly and Tolvanen, 2008; Medini and Boucher, 2019), and using a 

domain-specific language (Kosar et al., 2016; Kosar et al., 2014; Nakamaru et al., 2019), may 

eliminate the abovementioned problems and facilitate the creation of DT applications. Hence, 

in this paper, we introduce a domain-specific modeling language (DSML), called DSML4DT, 

which provides the MDD of DT software for the wide range of processor families and 

kernels. In fact, DSML4DT is free of processor types and it can be used for creating DTs for 

any architecture conforming to the international “Devicetree” specifications (Devicetree 

Community, 2019). CPUs with both 32-bit and 64-bit addressing capabilities are supported by 



ACCEPTED MANUSCRIPT 
 

3 
 

DTs. To name a few, DTs can be prepared for the processors and architectures such as ARC, 

ARM, X86, PowerPC, Xtensa and also MicroBlaze soft processor; so it is possible to model 

DT components corresponding to all these processors and architectures with using 

DSML4DT.   

Developers can visually model their software using DSML4DT’s graphical syntax which 

conforms to the “Devicetree” specifications. DT models are validated inside the integrated 

development environment (IDE) of DSML4DT and artifacts, all required to implement the 

designed DT, are automatically generated via execution of the model-to-text transformations 

defined inside DSML4DT. DSML4DT’s metamodel represents a platform-independent 

metamodel of DTs and hence instance DT models conforming to this metamodel can be 

converted to the DT configurations for different embedded system architectures. The related 

MDD process is described in this paper. In addition, a comparative evaluation of using this 

new language was performed inside one of the leading IT companies in Turkey which 

produces DT-based intelligent transportation systems and manufactures bus fleet terminals. 

We also discuss the results achieved from this evaluation. 

The remainder of the paper is organized as follows: Section 2 gives the related work on 

developing DT software. Section 3 briefly discusses DT structure. Syntax and semantics 

definitions of DSML4DT are introduced in Section 4. A discussion of the MDD process 

supported with DSML4DT is given in Section 5. The evaluation of the language is presented 

in Section 6. Finally, we conclude the paper with Section 7. 

 

2. Related Work 

There are various recommendations in the literature for the generation of hardware driver 

code. For instance, Katayama et al. (2000) propose generating driver code for Unix-like 

systems. With using model-driven techniques, Chen et al. produce “Makefile” files for the 

Linux kernel (Chen et al. 2014). Similarly, a number of driver code is generated for a single 

platform in (King et al., 2012). Lecomte et al. (2011) describe rules to create UML models for 

embedded systems with applying MDD for a multiple-input–multiple-output process. 

However, all of these studies do not support DT configurations and generation of DT files.  

Two recent studies (Neuendorffer, 2018; Jassi et al. 2018) consider the automatic 

achievement of DT configurations from embedded system designs. Neuendorffer (2018) 
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discusses the use of model-based approaches in the design of FPGA systems and states DTs 

can be created from system designs. Although the related design flow is exemplified through 

a case study, the automatic DT generation process is not given. Jassi et al. (2018) describe the 

use of GRIP tool, to facilitate the integration of hardware blocks defining Intellectual Property 

to System-on-Chips (SoCs). Like DSML4DT, GRIP is built on the Eclipse Modeling 

Framework (EMF) (The Eclipse Foundation, 2013) and both tools have similar features in 

terms of the creation of integrated circuit designs. Jassi et al. (2018) claim it is possible for 

their code generator to generate DT source files if their software is run on Linux operating 

system (OS), but no application example is found. In addition, the evaluations regarding the 

completeness of automatically generated code and the measurement of the speed of the 

software development process are not included. Finally, our DSML allows for the MDD of 

components for many additional interfaces such as USB, Serial Peripheral Interface (SPI), and 

Inter-Integrated Circuit (I2C). 

When remaining DT software development studies are taken into consideration, the use of DT 

for creating virtual machine and peripheral component interconnect interfaces (Nikkel 2016; 

Devigne et al., 2017) and the logical structure of hardware configurations (Schüpbach et al., 

2012) are encountered, but there is no automatic DT software production in these studies. A 

DT compiler is included inside “Altera SoC EDS” tool (RocketBoards, 2019). However, code 

generation is only possible for a single kernel version of Linux and does not have a general 

structure supporting different platforms. In addition to those efforts, both DTs and DT-based 

configurations are used in various purposes, e.g. multi-device support within BTFRS Linux 

file systems (Rodeh vd., 2013), support package optimization for microprocessors of some 

motherboards acting as a gateway in IoT networks (Gioia et al., 2016), preparation of driver 

terminals in public transportation (Arslan et al., 2017), management of interactive virtual 

hydroelectric generating equipment scenarios (Li et al., 2018), construction of embedded 

systems to be used in traffic sign identification (Farhat et al., 2019) and the production of real-

time health monitoring devices (Swaroop, 2019). However, none of these studies follow 

MDD approaches during the implementation of required DTs.  

 

3. DT Structure 

Simply, a DT is a data structure that describes the configuration of a hardware. This structure 

contains information about the many parts of the embedded system, such as the processor, 
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memory, data paths and peripherals. The OS parses the DT structure during bootloading and 

determines how to configure the microprocessor and whole embedded system. The DT 

structure is also used to make decisions about device drivers to be installed. 

The DT structure has a specific syntax starting with a node named root, represented by the “/” 

character. Multiple child nodes can be created from each parent node. The nodes can 

optionally include attribute values that contain additional data. The Device Tree Source (.dts) 

file format is used to express device trees and these files can be edited by software developers. 

The Device Tree Compiler Tool is used to convert DT descriptions in .dts format to the 

Binary Device Tree Blob (.dtb) format required by the OS. 

In Figure 1, a DT structure fragment from the definitions for CPU nodes running in an ARM 

microprocessor system is shown as an example. The beginning of the DT root node is given in 

line 1. Each node definition is located between the braces “{” and “}. The first child of the 

root node is the “cpus” node whose definition is written between lines 2-45. The architecture 

in here owns two processor cores, namely cpu0 and cpu1. Lines 6-37 include the definition of 

cpu0, the first child of the cpus node. The second child, cpu1 is defined between lines 39-44. 

For each processor core, information such as operating-points, clocks and clock-names need 

to be added separately and manually by the developers. In addition to know the details of this 

configuration, a developer should also deal with the specific syntax of these DT structures. It 

is worth indicating that Figure 1 includes a simple DT structure example which covers only 

the basic definitions of cpu components in a SoC configuration. A DT developer should also 

know and insert domain-specific configuration for other components such as memory units, 

communication channels and peripherals. An embedded system requires a large number of 

such information to be written manually in DT syntax when developing the corresponding DT 

software. Hence, the related development process is both time consuming and complicated for 

DT developers. 
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Figure 1: An example of DT structure 

 

4. Syntax and Semantics of DSML4DT 

The abstract syntax of DSML4DT language is defined with a metamodel developed according 

to DT specifications given in (Devicetree Community, 2019). The preliminary version of the 

metamodel is introduced in (Arslan and Kardas, 2018). This initial metamodel has been 

revised and extended in this study to complete the component relations required especially on 

SoC and peripheral DT descriptions. The metamodel is divided into five different viewpoints, 

called Core, SoC, Aips_Bus, Spba_Bus and Peripheral. The placement of the meta-entities 

inside these viewpoints is made according to DT usage in embedded systems. The metamodel 

01 / {      //The root Node 
02 cpus {     //Child of the root node 
03  address-cells = <1>; 
04  size-cells = <0>; 
05 
06  cpu0: cpu@0 {   //First child of the cpus node 
07   compatible = "arm,cortex-a9"; 
08   device_type = "cpu"; 
09   reg = <0>; 
10   next-level-cache = <&L2>; 
11   operating-points = < 
12    /* kHz    uV */ 
13    996000  1275000 
14    792000  1175000 
15    396000  1150000 
16   >; 
17   fsl,soc-operating-points = < 
18    /* ARM kHz  SOC-PU uV */ 
19    996000 1175000 
20    792000 1175000 
21    396000 1175000 
22   >; 
23   clock-latency = <61036>; /* two CLK32 periods */ 
24   clocks = <&clks IMX6QDL_CLK_ARM>, 
25     <&clks IMX6QDL_CLK_PLL2_PFD2_396M>, 
26     <&clks IMX6QDL_CLK_STEP>, 
27     <&clks IMX6QDL_CLK_PLL1_SW>, 
28     <&clks IMX6QDL_CLK_PLL1_SYS>, 
29     <&clks IMX6QDL_PLL1_BYPASS>, 
30     <&clks IMX6QDL_CLK_PLL1>, 
31     <&clks IMX6QDL_PLL1_BYPASS_SRC> ; 
32   clock-names = "arm", "pll2_pfd2_396m", "step", 
33          "pll1_sw", "pll1_sys", "pll1_bypass", "pll1", "pll1_bypass_src"; 
34   arm-supply = <&reg_arm>; 
35   pu-supply = <&reg_pu>; 
36   soc-supply = <&reg_soc>; 
37  }; 
38 
39  cpu1: cpu@1 {   //Second child of the cpus node 
40   compatible = "arm,cortex-a9"; 
41   device_type = "cpu"; 
42   reg = <1>; 
43   next-level-cache = <&L2>; 
44  }; 
45 }; 
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is encoded with Eclipse Ecore (The Eclipse Foundation, 2013) and hence it is possible to 

integrate the metamodel with various MDD tools based on EMF. 

DSML4DT’s metamodel is composed of more than 70 meta-entities (corresponding to DT 

components) and their relations. Due to space limitations of the journal, it is not possible to 

discuss all meta-entities, and in here we only give the brief descriptions of the viewpoints. 

Similarly, the partial Ecore diagram illustrating the Core viewpoint is shown only. However, 

the whole metamodel, Ecore diagrams for all viewpoints and the complete specification of all 

DSML4DT meta-entities and their relations can be found in the accompanying Mendeley data 

repository (Dataset, 2019). 

In the following, five viewpoints of DSML4DT (Core, SoC, Aips_Bus, Spba_Bus and 

Peripheral) are briefly described. Elements and associations covered in each viewpoint are 

indicated in the text with italics.   

Core Viewpoint: Figure 2 shows the Ecore representation for this viewpoint. Element root is 

the base node from which the entire system is produced. The root element is in “has-a” 

relationship with other elements derived from the root. The processor and memory of the 

embedded system are defined in this viewpoint. For multi-core processors, the necessary 

derivations for each core unit are made from the cpus element. In addition, there are aliases 

and chosen elements which do not have any hardware relations, and these elements own 

abbreviations, definitions, and boot parameter transitions to be used in all DT structures. 

SoC Viewpoint: This part of the metamodel describes the SoC integrated circuits. Parameter 

settings of many SoC features such as sound, image, and timer are provided inside this 

viewpoint. Moreover, the interrupt_controller element handles the generation and the 

adjustment of all interrupts in the embedded system. 

Aips_Bus Viewpoint: SoC peripheral components with low bandwidth communicate with SoC 

units via Advance High Performance Bus to Internet Protocol (Aips) Bus interface in 

embedded systems. Within Aips_Bus viewpoint, it is possible to model DT elements such as 

caam, iomuxc, ldb, usb, fec, i2c, uart, pwm, flexcan, gpio, wdog, clks, usbphy and spba_bus. 

Spba_Bus Viewpoint: In embedded systems, Shared Peripherals Bus Interface (SBPA) Bus is 

used for communicating with some shared external units. This interface enables the 

communication between the Smart Direct Memory Access core and the peripherals. 

Sbpa_Bus viewpoint supports modeling DT structures such as spdif, esai, ssi and ecspi. 
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Peripheral Viewpoint: Hardware units, which are not on SoC integrated circuit and connected 

to SoC from the outside, are modeled in DSML4DT according to this viewpoint. Integrated 

circuit peripherals with different audio and video codecs are defined. Peripheral elements like 

clocks, battery, gpio_keys, sound, sound_spdif, sound_hdmi, lcd and backlight are generated 

directly from the root element in the metamodel. 

 

 

Figure 2: DSML4DT’s Core Viewpoint 

We also provide a graphical concrete syntax which maps DSML4DT’s abstract syntax 

elements to their graphical notations. In order to construct DSML4DT’s concrete syntax, we 

benefited from the features of Sirius (The Sirius Project, 2016) modeling environment. Both 

providing a tool for implementing a graphical editor from an Ecore metamodel and allowing 

one to define dedicated editors including diagrams based on a viewpoint approach caused us 

to build DSML4DT’s graphical modeling toolset on Sirius environment. 

Graphical notations for the abstract syntax meta-elements were determined first and tied to the 

domain concepts with using Sirius. Table 1 lists some important notations. A screenshot from 

Sirius-based IDE of DSML4DT is given in Figure 3. It is possible to create model diagrams 
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for each viewpoint (see left upper section in Figure 3). Model symbols, associations and 

names can be seen in these diagrams. All editors for the viewpoints have a palette (seen at the 

upper right of Figure 3). In here, the items specific for the concrete syntax of each DSML4DT 

viewpoint are listed. Hence, developers can create DT models conforming to DSML4DT 

specifications by simply drag-and-dropping required items from the palette. 

 

Table 1: Some of the concepts and their notations provided for DSML4DT’s graphical 

concrete syntax 

Concept Notation  Concept Notation 

Root 
 

Timer 
 

Cpu 
 

L2 Cache 
 

Memory 
 

Pwm 
 

SoC 
 

Flexcan 
 

Interrupt 

Controller   
Gpio 

 

Aips Bus 
 

Wdog 
 

Ipu 
 

Spdif 
 

Hdmi 

Core  
Esai 

 

Hdmi Cec 
 

Uart 
 

Power 
 

Lvds 

Channel  

Sound 
 

Battery 
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Figure 3: A screenshot from DSML4DT IDE 

 

Palettes for the viewpoints have modeling elements specific for the related DSML4DT 

viewpoint. For example, the palette section seen in Figure 3 currently includes modeling 

elements only specific for the Core Viewpoint. However, some common modeling elements 

can be found in different viewpoints. For example, the SoC element is both located in the 

Core and SoC viewpoints. For this reason, a SoC node created in the Core viewpoint diagram 

is automatically added to the SoC diagram. Thus, the consistency between the viewpoints of 

the DT models is ensured. Such features are provided by the static semantics of DSML4DT. 

Finally, at the bottom of the editor, a Properties section resides. In this section, all remaining 

hardware properties pertaining for each modeled device element can be entered. Hence, all 

model properties can be completed via this development tool. In Figure 3, this section 

currently shows how the properties are entered for the selected model element (one cpu 
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instance, called cpu0) in the diagram. To insert values for the properties of another DT model 

element, this element located at the Modeling section can be clicked and hence its properties 

are listed in the Properties section. DSML4DT IDE provides the interface for the completion 

of all model elements’ properties defined according to Devicetree standard which leads to 

completely generate DT definitions for the corresponding DSML4DT models. However, 

some properties depend on the different types of peripheral integrated circuits and their 

definitions may not be supported in the Devicetree standard, hence they can not be fully 

modeled with DSML4DT. Such properties of these peripherals need to be added manually 

into the generated definitions. For instance, let us consider an integrated circuit increasing the 

number of GPIOs. This circuit works with SPI interface. Figure 4 shows the DT node 

description prepared for this circuit. Code lines between 1-5 and 9-13 are auto-generated by 

DSML4DT. However, the standard DT structure does not support some additional device 

properties required for this circuit (shown in bold in Figure 4 between lines 6-8) and both 

these non-standard properties and the corresponding values should be manually added to the 

configuration.      

 

 

 

 

 

 

 

 

 

 

 

Figure 4: An example of DT structure in which some parts are auto-generated by 

modeling with DSML4DT while remaining is manually added to complete the 

configuration.  

 

Constraint-checks and static semantics controls are automatically made inside the 

environment according to DSML4DT model validation rules. These rules were written with 

using Acceleo Query Language (AQL) in the Sirius platform (AQL, 2018). EMF models can 

be queried with AQL. Moreover, rules written with AQL bring strong model validation 

including type checking at the validation time. AQL interpreter is used in Sirius to execute 

written queries (validation rules) on EMF-compliant system models. For each DSML4DT 

01  gpiom1: gpio@0 { 
02                  compatible = "microchip,mcp23s08"; 
03                  gpio-cells = <1>; 
04                  gpio-controller; 
05                  reg = <0>; 
06                 mcp,spi-present-mask = <0x03>; 
07                  mcp,gpio-base = <300>; 
08                  mcp,spi-max-frequency = <10000000>; 
09                 interrupt-controller; 
10                  interrupt-parent = <&gpio6>; 
11   interrupts = <11 4>; 
12                 interrupt-cells = <2>; 
13           }; 
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viewpoint, we created validation rules in AQL syntax and they are ready to be used during 

MDD of DTs. For instance, the following AQL rule checks whether at least one power 

attribute is supplied for a gpio_keys instance inside a DSML4DT Peripheral viewpoint: 

aql: self.power-> notEmpty () 

Following the “aql” command the rule starts after “:”. “self.power” uses the power attribute 

value in the gpio_keys instance element. Then “->” specifies that this attribute value cannot be 

empty by applying “notEmpty()” query. Similarly, execution of the following AQL rule 

confirms the naming of each memory instance inside a DSML4DT Core viewpoint: 

aql: self.name-> one (str | str.equals ('memory'))   

In fact, developers do not need to know both the definition and the structure of these rules 

since the rules are automatically applied on a DSML4DT instance model without any user 

intervention and error messages are shown to the user inside the IDE when the model 

validation fails.  

The rules enable checking constraints such as compartment (e.g. DT memory and battery 

elements can be created only from the root), number of relationships between DT model 

elements (e.g. only one cpus element can be derived from root) and source and destination 

elements in a relationship (e.g. battery can be created from the root but not vice versa). 

Moreover, the constraint-checks also include some editorial features which assist the user in 

the design process while creating the model, such as transition between viewpoints (e.g. 

design SoC before Core model), unification for all elements (e.g. a root element created inside 

Core is automatically added into Peripheral model), integrity of relationships and elements 

inside all viewpoints (e.g. when a DT element is deleted, all its relations inside all DSML4DT 

viewpoints are deleted automatically).  

Moreover, validation of the DT models according to DSML4DT static semantics 

specifications is also performed in the IDE. Inclusion of the mandatory elements (e.g. Model 

Validation Rule: Peripheral_1 - At least one key element must be generated from the 

gpio_keys) and cardinalities of the elements in the placeholders (e.g. Model Validation Rule: 

Aips_bus_6 - One display_timings element must be in the aips_bus diagram) are controlled. 

Finally naming conventions are also validated (e.g. Model Validation Rule: Core_10 - The 

memory element should be named as “memory”). Additional examples of these validation 
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rules are available in (Dataset, 2019). Use of these rules and appearance of the validation 

messages are exemplified in the next section. 

In order to generate executable DT files from DSML4DT models, we defined a series of 

model-to-text (M2T) transformation rules by using Acceleo (Acceleo, 2018). Acceleo 

provides a tool as an Eclipse plug-in where M2T transformations can be written, parsed, 

checked, and directly executed inside the IDE. It enables the definition of code generation 

rules and also supports the interpretation of these rules. The semantics of DSML4DT 

language is provided over the application of these rules at run time on DT models conforming 

to DSML4DT syntax. Hence, the generation of DT source code from DSML4DT models is 

possible. The generated code for DTs can be directly executed within the embedded OS 

environment. Examples of the written M2T rules can be found in (Dataset, 2019). 

 

5. Model-driven DT Development Methodology based on DSML4DT 

Features of DSML4DT language discussed in Section 4 can be used to constitute a model-

driven DT development methodology in which developers can visually design and implement 

their DT-based embedded systems. The proposed model-driven methodology includes system 

modeling and automatic code generation for exact DT implementations. 

In the system modeling step, a developer uses the fully functional graphical IDE of 

DSML4DT to design the system-to-be-developed. DSML4DT’s concrete syntax covers 5 

viewpoints and hence for each viewpoint, a modeling palette is provided. The tool does not 

only offer a computer-aided design for system modeling, but also supports various automatic 

constraint checks and semantics controls via model validation which lead the designers to 

create accurate models. The main outcome of this step is DT software models conforming to 

DSML4DT specifications. 

The next step is the code generation and completion for DT software. The output of the 

previous step will be the input for the execution of this step. In here, DT models are converted 

into DT code for the targeted embedded system. The M2T transformation rules are 

automatically executed on the DT instance models and code is obtained for the DT 

implementation. The developer does not need to know about both the context of M2T rules 

and their execution details. (S)he only selects the code generation feature over the IDE. The 
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result of the automatic code generation step is DT source files. These files can be used later in 

the OS where they are required. 

It is worth indicating that DT code is generated according to DSML4DT instance models 

created by the DT developers. In fact, each instance model consists of more than CPUs and 

memories, i.e. it is possible to model a SoC with many sound and video units, communication 

interfaces and additional peripherals. In addition to the visual design of a SoC, DSML4DT 

IDE enables the inclusion of additional properties specific for the related integrated circuits. 

DSML4DT syntax is based on the international “Devicetree” specifications (Devicetree 

Community, 2019) and abstract from a specific processor or a hardware system. As discussed 

in the introduction, currently it is possible to produce hardware configurations for various 

processors and architectures with using Devicetree specifications; hence DSML4DT supports 

the MDD of DTs pertaining to all these processors. Same is valid for future processors 

supporting Devicetree specifications. DT developers can model SoCs including these new 

processors again with DSML4DT and DT code for these new hardware can automatically be 

achieved from these instance models.          

In the following subsection, development of a DT software for a dual core embedded system 

is discussed in order to provide some flavor of using above MDD methodology. 

 

5.1. Development of a DT software for a bus driver terminal 

The device, for which a DT software is required, is a driver terminal (computer) used in 

public transportation buses. This device can be supported with Android or Linux OS where 

DT structure can be used. The device is used by the bus drivers and it can perform operations 

such as reading RF cards, monitoring environment temperature and making voice 

announcements, e.g. inside a bus. The hardware of this driver terminal (Figure 5) is designed 

and manufactured by Kentkart Co. (Kentkart, 2019). 



ACCEPTED MANUSCRIPT 
 

15 
 

 

Figure 5: The driver terminal device 

The driver terminal device is a computer having an i.MX6 Dual Lite series micro-controller 

with ARM dual core CPU. The device also has 1 GB RAM and 4 GB storage unit. Modules 

such as SPI interfaced memory, Secure Digital interfaced MMC, gigabit Ethernet, Real Time 

Clock and USB interface are all available for the multimedia system support. A power 

management controller is used in the device. The ignition and odometer signals of the vehicle 

can be used in the device. Hard disk support of the system is provided by the SATA interface. 

In order to access the CAN in the vehicles, the microprocessor CAN interface is used. There 

are also camera interfaces and an audio converter integrated circuit that can work with I2S 

interface for audio output. 24-bit LCD is supported with RGB or LVDS interfaces, and LCD 

backlight supply circuit is located in the device. There is an RF card read/write circuitry and 

the Secure Access Module is available for safe RF access. Accelerometer sensor, EEPROM, 

temperature sensor and digital potentiometer are also included. These units are controlled by 

the I2C interface. There is a buzzer circuit for warnings. Finally, the device has GPS, GSM 

and Wi-Fi modules. 

For this device, all hardware parts, briefly introduced above, need to be described in the DT 

layer of the embedded system architecture. Its DT software is basically located between 

hardware and OS drivers and DT files are compiled independently from OS kernels. All 

hardware parameters of the terminal pass through from DT binaries to OS kernels during the 

boot up stage of the embedded system. 

In this example, DTs for the driver terminal described above are generated with using 

DSML4DT. Conforming to the proposed MDD methodology, we start by creating system 

models according to 5 viewpoints of DSML4DT. For instance, Figure 3 shows the Core 
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model designed for this hardware. First, a DT root node instance is created by drag-and-

dropping, and then memory, chosen, and aliases nodes, mandatory for DT structure, are 

added. The driver computer has a dual core processor, so 2 cpu nodes are created. In addition, 

SoC node from which SoC features will be generated is created here. Hardware dependent 

properties of all nodes are also entered during this stage. 

For another example, Figure 6 shows the Aips_Bus model designed for the driver terminal. 

Many features of the device and support of different interfaces are provided within this 

viewpoint. There are 2 Aips_Bus lines in the device. These lines are modeled with aips1 and 

aips2 nodes. 7 gpio, 4 pwm, 2 flexcan, 2 usbphy and 2 wdog nodes are produced from the 

aips1 node. Also clks, iomuxc, ldb and spba_bus nodes are created from aips1. Remaining 

SoC, Spba_Bus and Peripheral models created for the specifications of the driver terminal can 

be found in (Dataset, 2019) with their discussions. 

The validation of the designed model is performed inside IDE according to the constraints and 

rules previously discussed in Section 4. During this automatic validation process, error 

messages are shown to the developer if there are any violations. Figure 7 illustrates how 

developers are notified if some errors are encountered during the validation of a Core model. 

 

Figure 6: Aips_Bus model of the driver terminal designed inside DSML4DT IDE 
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Figure 7: Some validation examples for the driver terminal DT model 

After the design and validation of models are completed, DSML4DT’s code generator works 

on these models and hence produces DT code ready to be executed. Figure 8 includes a 

fragment from the auto-generated DT code for the device terminal. M2T transformations are 

applied on the Core model of the driver terminal for root, cpus and cpu instances. Lines 1-3 in 

Figure 8 show the generated code for the root DT node. DSML4DT’s code generator 

determines each root instance and the corresponding “model” and “compatible” attributes and 

then produces the required code in DT syntax. Similarly, code for cpus, cpu0 and cpu1 DT 

elements are generated between lines 5-7, lines 9-19 and lines 21-26 respectively. For this 

case study, a total of 906 lines of executable DT code is automatically generated from the 

DSML4DT models designed for the driver terminal. Whole code is available again in 

(Dataset, 2019).  
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Figure 8: An excerpt from the generated DT file 

After the DT file is produced, it is ready for processing in an OS kernel. DT file is copied to a 

directory in the kernel. This directory is predefined and fixed in the kernels. The DT software 

stored in this file is in .dts format and text-based. Then, this .dts file is compiled by the DT 

compiler and a .dtb file is created in binary format as previously discussed in Section 2 of this 

paper. That file is now suitable for the execution in the kernel. When the OS is initialized, the 

.dtb file is parsed and the necessary hardware parameters are taken from this file. Hardware 

components (CPU, memory, peripherals, etc.), whose descriptions are received from this file, 

can now be used and managed by the kernel. Based on the current DSML4DT 

implementations, we see that creating DTs with DSML4DT does not affect both the way and 

the speed of processing and managing these files inside OS kernels. 
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6. Evaluation 

In order to determine the feasibility of using DSML4DT for the development of DT software, 

a comparative evaluation was performed. For this evaluation, we adopted the evaluation 

framework proposed in (Challenger et al., 2016) which enables the assessment of language 

constructs and the use of DSMLs according to various dimensions and criteria. The scope of 

our evaluation here covers Development Sub-dimension (under Execution Dimension) and 

User Perspective Sub-dimension (under Quality Dimension) of this framework. Therefore, the 

evaluation criteria pertaining to these dimensions, called Output Performance (Generation 

Performance), Development Time Performance, and Qualitative Analysis by a questionnaire, 

are taken into consideration. We revised these dimensions and criteria to make them 

meaningful and relevant for evaluating DSML4DT. We aimed at finding answers to the 

following research questions (RQs)? 

RQ1: To what extent does the use of DSML4DT allow the automatic generation of DT 

components? 

RQ2: Does the use of DSML4DT reduce the DT development time? 

RQ3: What are the pros and cons of using DSML4DT from DT developers’ perspective? 

To find answers for the above RQs, our evaluation consists of two parts: 1) quantitative 

analysis, including generation performance and development time evaluations 2) qualitative 

assessment within user perspective. 

The whole evaluation was carried out in Kentkart Ege Elektronik Company (shortly Kentkart) 

(Kentkart, 2019). Kentkart is one of the leading IT companies in Turkey which produces 

various intelligent transformation system solutions for the automated fare collection, vehicle 

tracking, real-time passenger information, route planning and on-board video surveillance. 

Currently, mass-transit systems of Kentkart are being used in more than 25 cities of Turkey 

and more than 10 worldwide locations in countries including Hungary, Macedonia, Pakistan, 

Poland, Serbia, United Arab Emirates and United States. Kentkart also manufactures 

hardware such as ticket vending machines, turnstile validators and bus driver terminals. Huge 

amount of software for all these devices and information systems are DT-based and/or 

configured with DT structures.  
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Five software developers working in the R&D center of the company were voluntarily 

participated in our study as the evaluators. These developers were first asked to develop DT 

software for four different systems by using their conventional DT development approach 

followed inside the company. Later, they were asked to apply the model-driven DT 

development methodology covering the use of DSML4DT to develop the same systems. All 

evaluators have at least a B.Sc. degree in computer / electrical engineering. Two of them also 

have M.Sc. degree in electrical engineering and pursuing Ph.D. in information technologies at 

the time of this study conducted. All of the evaluators are experts in embedded software 

development with varying experience from 5 to 11 years. Specifically, they have an average 

of 4 years of experience on design and implementation of DT-based systems. None of them 

previously used MDD techniques during DT implementations. 

The evaluation process has the following stages: First, all evaluators received an MDD 

review. This step ensures countervailing their level of familiarity to software modeling. All 

evaluators received an introduction to DSML4DT language and its IDE for modelling and 

code generation. Then, a briefing on the case studies consisting of developing different DT 

systems was given to evaluators. Finally, the evaluators developed the required DTs by going 

through steps of analyzing use cases, designing/modelling systems, implementing/generating 

code and testing. Elapsed times were recorded for each developer and each step. In addition, 

artifacts of all experiments were evaluated to find out especially the generation performance 

of DSML4DT.  

DT software development for four different systems with varying complexities was taken into 

consideration as the use cases. One of these systems was the bus driver terminal previously 

discussed in Section 5. Remaining DT-based systems were required to be developed and 

installed on three different hardware all manufactured by Kentkart. These are briefly 

described below: 

Network Video Recorder (NVR): This device includes an i.MX53 series single core processor, 

1 GB RAM, 512 MB NAND Flash and network units. This device does not have any 

peripheral that plays video or audio files. There is no LCD and touchscreen interfaces for the 

user interaction. The device has Linux OS. 

Validator: This device is used in fare collection systems for public transportation. Usually RF 

cards are used to collect fees on public transportation via this device. It includes an Intel 

PXA270 series single core processor, 256 MB RAM, 128 MB NAND Flash and network 



ACCEPTED MANUSCRIPT 
 

21 
 

units. Unlike NVR, the validator has additional features such as RF card read/write and LCD 

support. It has Linux OS. 

Multimedia Player: This device meets multimedia needs of public transportation. Basically, 

the device has LCDs via HDMI interface and provides audio output for announcements in 

buses. It also supports SATA interface, GSM, GPS and owns serial ports. The device includes 

an i.MX6 Quad series quad core processor, 1 GB RAM and 8 GB EMMC storage. There is 

optional LCD support via LVDS interface. It works on Android OS. 

 

6.1. Results and Discussion 

6.1.1. Quantitative Analysis 

This analysis consists of measuring the generation of artifacts (called generation 

performance), and the time saved during whole development process (called development 

time performance). 

Generation Performance: 

DSML4DT’s generation performance was calculated to answer RQ1. For this purpose, the 

comparisons between the automatically generated code and delta code added to complete the 

system are made. All evaluators developed their systems required for each case study with 

using DSML4DT to generate DT code and then completed this code to build the DT system. 

Performance evaluation is fulfilled by comparing the percentage of artifacts automatically 

generated and manually developed. These artifacts are Lines of Code (LoC) of DT files 

required for the systems namely, Driver Terminal, Multimedia Player, NVR and Validator 

devices. Measurement results are shown together in Figure 9. The LoCs listed for each case 

study is the average of all developers in the evaluator group. For instance, all evaluators 

obtained auto-generated code depending on their DSML4DT models for the driver terminal 

case study with varying ratios. 76.31% LoC is their average. The evaluators needed to 

manually add %23.69 LoC on average to complete their driver terminal DT software. The 

Overall Average is the LoC average obtained from all case studies. All measurement results 

for each developer and for each case study can be found in (Dataset, 2019). 

According to the results in Figure 9, the average generated LoC rate is 75.52% for the whole 

evaluation. Generated LoC varies between approximately 71% and 83% for different case 
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studies. The most important reason for these variations are the device architectures used in the 

case studies. For example, Validator device has many DT elements whose modeling are 

directly supported by DSML4DT, and hence 83% of its DT software is automatically 

generated. However, in the architecture of the NVR device, there exist many software 

components apart from DT elements, hence the average LoC decreases to 71%. In addition, 

both the developers’ knowledge and experience on each device and the quality of models 

created by the developers naturally have effect on the generated LoCs. In order to keep this 

effect minimum, we conducted this multi-case evaluation with varying DT development 

complexities instead of only one use case. Thus, a rate of 75.52% LoCs for the auto-

generation with just using DSML4DT is quite high taking into consideration the variations 

encountered both in the needs of the DT applications for each case study and the hardware 

architectures of used embedded systems. 

 

Figure 9: DSML4DT’s generation performance 

Development Time Performance: 

In order to answer RQ2, we compared and analyzed the times which were recorded during 

Kentkart engineers developed the requested DT systems with using the new MDD process 

(Experiment A) and their conventional software development process (Experiment B). 
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Development times were recorded separately for all developers including all steps of DT 

development. The average times for each of these phases were calculated in Experiment A 

and Experiment B. Obtained results are presented in Figure 10 to facilitate comparing peer 

steps. Individual times can be found in (Dataset, 2019). The followings can be deduced for all 

steps of the development processes based on these results: 

Analysis: The analysis step for each use case is not dependent on any tool or platform. Hence, 

the developers spent almost similar times in both Experiment A and Experiment B. Actually, 

this step is just dependent on the complexity of the embedded device’s DT structure. 

Therefore, the difference between times can be ignored. 

Design/Modelling: Elapsed time for modeling in Experiment A is slightly more than design in 

Experiment B. In addition to graphical modeling, DSML4DT has static semantics checks to 

avoid semantical errors which probably take more time to correct them later. Thus, modeling 

with DSML4DT extends the length of the design time slightly. This kind of detailed 

modelling was not considered by the developers during Experiment B. However, that 

additional time spent in modeling during Experiment A will lead to gain more detailed and 

accurate code generation in the next step. 

Implementation/Generation: This is the step in which the developers achieved the most time 

saving with using DSML4DT. In Experiment A, DT code was obtained automatically for all 

use cases. In Experiment B, developers wrote required code manually based on their design. 

DSML4DT succeeded in the automatic generation of DT code by utilizing the products 

acquired from the detailed modeling. However, in Experiment A, the developers still needed 

to complete the generated code by manually adding delta code to have a fully executable 

program. Consequently, the implementation time required in Experiment B is about 5 times 

more than the generation and implementation time elapsed in Experiment A. 

Test: Similar to the previous step, elapsed time in Experiment A for system tests was 

conspicuously lower than Experiment B. Developers tried to find syntactic and semantic 

errors of the DT programs. In Experiment B, developers needed to find errors in the entire 

code. In Experiment A, developers generally dealt only with delta code added, which is much 

less than the generated code. Because generated code constitutes most of the error-free and 

almost-ready final code which does not need to be re-validated. Hence, the time required to 

find errors during Experiment A is nearly 4 times less than Experiment B.  
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After completion of testing, all written DTs for all use cases were ready to be executed inside 

all targeted embedded systems. Hence, developers completed the creation of the DT 

components required for Driver Terminal, NVT, Validator and Multimedia Player systems. 

This holds for both experiments (A and B) although elapsed times for this step varied 

according to the production mechanism of DT components (with or without using 

DSML4DT) as discussed above. 

Total Time: The total average development time elapsed in Experiment A is around 112 

minutes when all case studies are considered. This time for Experiment B is around 235 

minutes. Thus, developers completed the whole development process in Experiment A 

approximately 2 times faster than in Experiment B due to using DSML4DT. 

 

Figure 10: Comparison of the times elapsed during system development 

 

6.1.2. Qualitative Assessment 

Feedbacks, gained from the developers who experienced DSML4DT, were assessed to answer 

RQ3. For this assessment, a questionnaire was used which basically have 2 parts. In the first 

part, 26 questions were asked to the evaluators in Kentkart to assess their experience on using 

DSML4DT from different perspectives. To prepare this scoring part of the questionnaire, the 

Framework for Qualitative assessment of Domain-specific Languages (FQAD), introduced in 
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(Kahraman and Bilgen, 2015), was adopted and customized to the DSML4DT specifications. 

These questions were scored by the participants in the range of 1~5. Questions in this section 

are categorized into 10 different sections for evaluating a DSML: Functional Suitability, 

Usability, Reliability, Maintainability, Productivity, Extensibility, Compatibility, 

Expressiveness, Reusability and Integrability. In the second part of the questionnaire, 6 open 

ended questions were asked to the evaluators to criticize using DSML4DT. The whole 

questionnaire and all answers received from all evaluators are available at (Dataset, 2019).  

Assessment according to Scored Questions: 

The average scores received from the evaluators for the first part of the questionnaire are 

given in Figure 11. As can be seen, DSML4DT got scores ranging from 4 to 5 according to all 

assessment categories. The grand average of scores for all responses is 4.64 which is quite 

high. Hence, this result can be considered as one of the success indicators of the designed 

language. 

Although average scores obtained for all categories are high, prominent features of 

DSML4DT for this assessment are its functional suitability, compatibility and reusability. 

Within this context, it seems that the evaluators agreed on DSML4DT’s all-embracing model 

for DT structures and they found DSML4DT mostly suitable for the needs of various 

embedded system development. The scores also showed the evaluators thought DSML4DT 

promoting programming productivity. Moreover, DSML4DT was found compatible with DT 

specifications and hence DT models conforming to DSML4DT can be easily utilized during 

development. Finally, the evaluators confirmed DSML4DT’s power on expressing DT 

structures and its language constructs can be re-usable for various DT applications. 
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Figure 11: Scores according to assessment categories 

Assessment according to Open-Ended Questions: 

In the second part of the questionnaire, following questions were asked to the developers to 

get their feedbacks: 

1. Does DSML4DT make DT software development easier?  

2. Do you find DSML4DT useful for the development of DT-based embedded system 

software? 

3. Do you think the DSML4DT structure is strong enough to model overall DT structure? 

4. Do you think the DSML4DT IDE is easy to use? 

5. Are there any difficulties you encountered while using DSML4DT? If so, do you have any 

suggestions to solve it? 

6. Please write your suggestions and other comments for improving DSML4DT's features. 

In answers for the first question, all evaluators agreed that DSML4DT simplifies DT software 

design and speeds up the development processes. For the second question, the evaluators 

found DSML4DT feasible while some of them specifically indicated visual modeling with 

DSML4DT facilitates embodying conceptual DT designs. Considering the third question, 
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majority of the evaluators stated built-in modeling brought by the IDE is very strong in 

support the sustainability of system development, i.e. DT models can be modified easily for 

changing hardware configurations. In all answers given to the fourth question, it seems the 

evaluators agreed that the IDE provides a simple and comprehensive design where users do 

not spend much effort on preparing DT programs. 

In the fifth question, the problems encountered during the use of DSML4DT were asked. The 

evaluators stated that they do not encounter major problems. However, an evaluator said that 

installing the IDE for different computers is hard and time-consuming. We determined this 

difficulty originates from the configuration mismatches between the underlying Sirius 

platform and the setup of these computers. A detailed study has been carried out for this 

suggestion and a method of transporting DSML4DT IDE with underlying Eclipse Sirius 

platform as a software bundle has been derived. The installation of this new bundle now fixed 

this issue. Only two evaluators pointed out that migrating from classical software 

development methods into MDD came a little bit confusing at first and additional time is 

needed for adopting such approaches. Nevertheless, in their responses, the same evaluators 

also confirmed the features brought by DSML4DT and agreed on this new language facilitates 

the construction of DTs.  

Some valuable suggestions were received for the sixth question. For example, an evaluator 

suggested to integrate modeling both DT structures and OS drivers. In fact, such an 

integration can be easily made inside DSML4DT’s IDE when meta-entities pertaining to OS 

drivers are added into DSML4DT metamodel. For this purpose, a collaborative work with 

Kentkart engineers has been recently initiated on extending the metamodel considering Linux 

driver specifications. Another developer suggested highlighting the parts of the auto-

generated DT programs where possible additions are needed. Considering this suggestion, 

DSML4DT’s code generation process now produces an additional document informing which 

parts of the generated code need to be completed and marks the related code. 

6.2. Threats to the validity 

As with any evaluation study, there are some threats to the validity of the conducted 

evaluation. First, a relatively limited number of developers could participate in the 

assessment. However, DT software development in embedded systems is a specific field and 

the number of experts in this field is rare. Moreover, we paid attention on conducting this 

evaluation only with developers who actively implement commercial DT-based embedded 
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systems in the industry. As indicated at the beginning of this section, the developers 

participated in this study have significant experience on industrial scale DT development and 

we believe that both their experience and feedbacks contributed much on the evaluation of 

DSML4DT. Length and comprehensiveness of multi-case studies also affected the number of 

volunteers since the volunteer participants were requested to develop four different embedded 

software completely by following their conventional DT development approach first and then 

they had to repeat the development of each of these systems also with using DSML4DT. 

Nevertheless, the number of our participants is satisfying considering Nielsen’s scale 

(Nielsen, 2012) for usability studies. 

Second, single evaluator group was used instead of two different groups, which could pose a 

threat to the execution phase. In our previous studies (Yildirim and Kardas, 2014; Kardas et 

al., 2017; Kardas et al., 2018) for other domains, we experienced using both single and double 

evaluator groups. Using a single group may raise the risk that the DT development experience 

without using DSML4DT can be reflected into MDD with using DSML4DT (or vice versa) 

when the same system is to be developed twice. Using two groups may minimize this risk. 

However, in case of two groups, the qualitative evaluation based on the user feedbacks will 

not be completed in a fruitful way since the groups with or without using DSML4DT will be 

different. For the questionnaire-based comparison, it is crucial that a single group implements 

the same DT software with or without using DSML4DT. There is also the difficulty of 

creating two homogeneous groups which have almost same level of domain knowledge, 

experience and skills. 

Finally, the choice of case studies may have an impact on the results. In order to mitigate this 

risk, instead of a single system development, multi-case studies with varying complexities 

were conducted. Rather than being trivial examples, multi-case studies herein consider actual 

embedded system DT implementations in a company operating in the relevant industry. 

  

 

7. Conclusion 

A DSML, called DSML4DT, for the MDD of DT software has been introduced in this paper. 

The difficulty of creating DT source files can be reduced and the necessity of mastering 

microprocessor-specific hardware while developing DTs can be eliminated by using 
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DSML4DT. After DT models are created, DT files can be generated automatically inside 

DSML4DT IDE. 

A comparative evaluation of using DSML4DT was performed inside an IT company 

producing DT-based intelligent transportation systems. The results showed that approximately 

76% of DT structures belonging to the hardware with different complexity can be obtained 

automatically only through modeling with DSML4DT. The new MDD process reduced the 

time elapsed for implementing software to half. Developers adopted the language particularly 

in terms of functional suitability, compatibility and reusability. The new DT software 

development process supported with DSML4DT is now being used in the company. 

DSML4DT language and IDE is available with including the required installation instructions 

at (Dataset, 2019). 

In our future work, we aim at automatic integration of specific OS device drivers into 

DSML4DT models. Hence, custom driver definitions can be made available inside the 

graphical syntax of DSML4DT to the developers for specific devices and OS.  
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