

Journal Pre-proof

AgentDSM-Eval: A Framework for the Evaluation of Domain-specific
Modeling Languages for Multi-agent Systems

Omer Faruk Alaca , Baris Tekin Tezel , Moharram Challenger ,
Miguel Goulão , Vasco Amaral , Geylani Kardas

PII: S0920-5489(21)00008-8
DOI: https://doi.org/10.1016/j.csi.2021.103513
Reference: CSI 103513

To appear in: Computer Standards & Interfaces

Received date: 5 February 2020
Revised date: 15 October 2020
Accepted date: 5 January 2021

Please cite this article as: Omer Faruk Alaca , Baris Tekin Tezel , Moharram Challenger ,
Miguel Goulão , Vasco Amaral , Geylani Kardas , AgentDSM-Eval: A Framework for the Evaluation
of Domain-specific Modeling Languages for Multi-agent Systems, Computer Standards & Interfaces
(2021), doi: https://doi.org/10.1016/j.csi.2021.103513

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.csi.2021.103513
https://doi.org/10.1016/j.csi.2021.103513

Highlights

 A software evaluation framework, called AgentDSM-Eval, is introduced

 Domain-specific modeling languages (DSML) for Multi-agent Systems (MAS) are evaluated

 Supporting online tool enables conducting multi-case empirical evaluation of MAS DSML

 Tool successfully assessed a MAS DSML’s development time and throughput performance

 DSML features were evaluated according to novel MAS quality characteristics

AgentDSM-Eval: A Framework for the Evaluation of Domain-

specific Modeling Languages for Multi-agent Systems

Omer Faruk Alaca
1
, Baris Tekin Tezel

1,2
, Moharram Challenger

1,3
, Miguel Goulão

4
, Vasco

Amaral
4
, Geylani Kardas

1

1
International Computer Institute, Ege University, 35100, Izmir, Turkey

2
Department of Computer Science, Dokuz Eylul University, Izmir, Turkey

3
Department of Computer Science, University of Antwerp and Flanders Make, Belgium

4
Universidade NOVA de Lisboa, NOVA LINCS, DI, FCT, Lisboa, Portugal

omerfarukalaca@gmail.com, baris.tezel@deu.edu.tr, moharram.challenger@uantwerpen.be,

{vma, mgoul}@fct.unl.pt, geylani.kardas@ege.edu.tr

Abstract

Software development required for constructing multi-agent systems (MAS) usually becomes

challenging and time-consuming due to the properties of autonomy, distributedness, and

openness of these systems in addition to the complicated nature of internal agent behaviors

and agent interactions. To facilitate MAS development, the researchers propose various

domain-specific modeling languages (DSMLs) by enriching MAS metamodels with a defined

syntax and semantics. Although the descriptions of these languages are given in the related

studies with the examples of their use, unfortunately, many are not evaluated in terms of

either the usability (being hard to learn, understand and use) or the quality of the generated

artifacts. Hence, in this paper, we introduce an evaluation framework, called AgentDSM-

Eval, with its supporting tool which can be used to evaluate MAS DSMLs systematically

according to various quantitative and qualitative aspects of agent software development. The

empirical evaluation, presented by the AgentDSM-Eval framework, was successfully applied

for one of the well-known MAS DSMLs. The assessment showed that both MAS domain

coverage of DSMLs and the agent developers’ adoption of modeling elements can be

determined with this framework. Moreover, the tool’s quantitative results can assess MAS

DSML’s performance on the development time and throughput. AgentDSM-Eval also

enables the qualitative assessment of MAS DSML features according to novel quality

characteristics and measures, which it defines specifically for the MAS domain.

Keywords: Multi-agent system, Domain-specific modeling language, Agent-oriented

software engineering, Evaluation framework, Human factors in Modelling, Usability

Evaluation, AgentDSM-Eval

1. Introduction

In a Multi-agent System (MAS), autonomous software agents interact with each other

competitively or collaboratively to perform tasks and execute plans through a set of reactive

and/or proactive behaviors (Weiss, 2016). MAS are recognized as both useful abstraction and

effective technologies for modeling and building autonomous, complex, and distributed

systems in various industrial fields, e.g., industrial automation, real-time adaptive resource

management, large-scale network and service management, integrating quality and process

control in production lines, fast deployment of evolvable systems and predictive analysis for

business management (Leitao and Karnouskos, 2015; Liang et al., 2019). However, the

development of software required for constructing MAS usually becomes challenging and

time-consuming due to the properties autonomy, distributedness, and openness of these

systems, in addition to the complicated nature of internal agent behaviors and agent

interactions (Challenger et al., 2016a; Mascardi et al., 2019).

To minimize the abovementioned problems of MAS development, researchers in agent-

oriented software engineering (AOSE) field (Shehory and Sturm, 2014) define various agent

metamodels (e.g., Bernon et al., 2005; Omicini et al., 2008; Beydoun et al., 2009; Hahn et al.,

2009; Challenger et al., 2011; Garcia-Magarino, 2014; Tezel et al., 2016), which include

fundamental MAS entities and relations. Furthermore, model-driven agent development

approaches (Kardas, 2013) are provided, and the researchers propose using domain-specific

languages (DSLs) / domain-specific modeling languages (DSMLs) (Mernik et al., 2005;

Kelly and Tolvanen, 2008; Kosar et al., 2016) to facilitate design and implementation of

software agents by enriching MAS metamodels with some defined syntax and semantics.

In AOSE, perhaps the most popular way of applying model-driven engineering (MDE)

techniques for MAS development, is based on creating DSMLs with appropriate integrated

development environments (IDEs) in which both modeling and code generation for MAS-to-

be-developed can be adequately performed (Kardas and Gomez-Sanz, 2017). Proposed MAS

DSMLs (e.g., Hahn, 2008; Ciobanu and Juravle, 2012; Challenger et al., 2014; Goncalves et

al., 2015; Bergenti et al., 2017; Kardas et al., 2018; Sredejovic et al., 2018; HoseinDoost et

al., 2019) usually support modeling both the static and the dynamic aspects of agent software

from different MAS viewpoints including agent internal behavior model, interaction with

other agents, use of resources and other environmental entities. Although the descriptions of

these languages are given in these studies mostly including some examples of how they can

be utilized during MAS development, unfortunately, many do not consider an evaluation of

the proposed language, i.e., evaluating the usability of the language and the efficiency of the

generated artifacts.

Usability plays an essential role in the adoption of DSLs (Barišić et al., 2018). If some kind

of systematic evaluation for the usability of MAS DSMLs can be provided, this may lead the

agent developers to infer on whether a MAS DSML is suitable for the needs of agent design

and implementation, and so, it facilitates the MAS development. Quality assessment of the

MDE processes (Goulao et al., 2016) brought by using the MAS DSMLs compared to the

conventional MAS development approaches can also be possible with these evaluations.

Moreover, throughput performance (e.g., the generalization of agent components) of the

language and saving on the development time can be analyzed if an evaluation produces

some quantitative results. DSML developers, who implement these languages, may also

benefit from such assessment to improve their languages, e.g., according to the developers’

feedback. Hence, in this paper, we introduce an evaluation framework, called AgentDSM-

Eval, with its supporting tool which can be used to evaluate MAS DSMLs according to

various quantitative and qualitative aspects of agent software development. The main

contributions of AgentDSM-Eval can be listed as follows:

* A general framework that can be applied for the systematic evaluation of any MAS DSML.

* Semi-automatic comparison of DSML metamodels with a reference MAS metamodel to

quantitatively determine the DSML’s coverage on MAS domain concepts.

* Qualitative and quantitative evaluation of MAS DSMLs and their features with computer-

aided automation.

* Support on both conducting multi-case empirical evaluation of MAS DSMLs and online

analysis of the results achieved.

* Automatic analysis of designed models to infer which meta-entities and/or viewpoints of a

MAS DSML are mostly adopted by the agent developers.

* Qualitative assessment of MAS DSMLs according to novel quality characteristics and

measures specific to the MAS domain leading to comparable results.

The multi-case empirical evaluation, presented by the AgentDSM-Eval framework, was

successfully applied for one of the well-known MAS DSMLs. This evaluation’s results are

given in this paper as well as the discussion about the features of AgentDSM-Eval and its

tool. The use of AgentDSM-Eval’s qualitative characteristics in the comparative evaluation

of different MAS DSMLs is also exemplified.

The paper’s remainder is organized as follows: the AgentDSM-Eval framework and its

features are discussed in Section 2. Section 3 introduces the online tool that supports MAS

DSML evaluations and analyzes the results according to AgentDSM-Eval specifications.

Section 4 both demonstrates how AgentDSM-Eval can be used to assess a MAS DSML and

discusses the achieved results. Section 5 includes the related work on MAS DSMLs and their

evaluation. Finally, we conclude the paper with Section 6.

2. Evaluation Framework

The AgentDSM-Eval framework enables both the evaluation and the comparison of MAS

DSMLs by considering the various features such as ease of use, MAS domain coverage,

richness and efficiency of the supported toolsets, and finally, productivity on generating agent

software components. To provide both quantitative analysis and qualitative evaluation of

MAS DSMLs, the framework adopts the multi-case study approach which we first introduced

in (Challenger et al., 2016b) for evaluating a MAS development language, called SEA_ML

(Challenger et al., 2014; Challenger et al., 2018). According to this approach, using a DSML

is evaluated within the scope of many use cases, each covering the design and

implementation of agent systems for different business domains with varying complexities.

As we will discuss shortly, AgentDSM-Eval improves this approach by adding new metrics,

specially to facilitate the qualitative assessment of language features on MAS development.

This improvement comes in the sequence of our previous experiences (Kardas et al., 2017;

Kardas et al., 2018) that showed the qualitative assessment brought in (Challenger et al.,

2016b), which is composed of only answering three open-ended questions, limits the

appropriate procurement of evaluator feedback. Moreover, AgentDSM-Eval introduces the

comparison of language syntaxes quantitatively using a reference MAS metamodel, which is

also not supported in the previous work (Challenger et al., 2016b).

Both MAS DSML developers and users may benefit from the proposed framework. Figure

2.1. portrays how this tool-assisted framework can be used during the evaluation of MAS

DSMLs within the scope of various quantitative and qualitative aspects. In the following

subsections, we first describe the phases of the multi-case study protocol applied during the

evaluation of MAS DSMLs. Then, we will discuss both the execution of the AgentDSM-Eval

processes (shown in Figure 2.1) and the language features’ utilization on a quantitative and

qualitative evaluation of MAS DSMLs and their artifacts.

Figure 2.1: Use of AgentDSM-Eval framework for MAS DSML evaluation.

2.1 The Structure of the Multi-case Study

The Multi-case Study in AgentDSM-Eval is conducted in accordance with a protocol

consisting of three phases, namely preparation, execution, and analysis.

Each of the case study scenarios, consisting of various agents’ design and implementation, is

described in the preparation phase. The operational features of each MAS DSML to be

evaluated are also collected via these case studies. Besides, the MAS developers who actively

participate in the language assessment studies should also be determined in this phase. If

needed, the training on the MAS DSMLs, which will be evaluated, is given to this team to

keep the level of knowledge on using these MAS DSMLs the same required for the whole

team.

During the execution phase, an opening briefing is first presented to introduce both the case

study scenarios and the online tool for AgentDSM-Eval. Then, the evaluator teams, formed

by the agent software developers, design and implement the MAS that meets the related case

scenario's requirements. After finishing each MAS development, all developers are requested

to input data for the analysis by utilizing the AgentDSM-Eval web tool.

Finally, the analysis of the evaluation data is performed. This phase is automated inside the

AgentDSM-Eval tool (will be discussed in the next section) and does not need any human

intervention. Upon completion of data input, the web application automatically analyzes

these data and reports the quantitative and qualitative results pertaining to the evaluation of

the MAS DSML in question.

2.2 Quantitative Evaluation

The quantitative evaluation process inside AgentDSM-Eval consists of 3 main sections. First,

the abstract syntax of the MAS DSML, which is being evaluated, is compared with a

reference MAS metamodel to determine the comprehensiveness level of the language on

agent concepts. Then, the analysis of the development costs (using the elapsed time for MAS

development) and development outputs (artifacts) in a comparative way.

2.2.1 Comparison with a Reference Metamodel

Almost all MAS DSML studies (e.g., Hahn 2008, Gascuena et al., 2012; Challenger et al.,

2014; Goncalves et al., 2015; Bergenti et al., 2017; Kardas et al., 2018; Sredejovic et al.,

2018; HoseinDoost et al., 2019) provide definitions of agent components including agent

internals, plans, roles, goals, agent behavior models, and the relationship between agents

within a MAS. These definitions are mostly formalized with a metamodel description leading

to various language syntaxes for these DSMLs. However, very few of these studies discuss

how the proposed metamodels support MAS domain concepts. Moreover, they only show the

derived syntax utilization for a minimal number of MAS development examples. The

AgentDSM-Eval framework can measure each MAS DSML’s comprehensiveness on agent

domain concepts and their relations by comparing these languages’ metamodels with a

reference MAS metamodel representing an all-embracing model of agent components. In

addition to determining these metmodels’ domain coverage, the related analysis also enables

the MAS developers to compare MAS DSMLs. Thus, after each DSML’s metamodel is

evaluated according to this reference model, it is possible to provide quantitative information

to MAS developers to infer which MAS DSML provides certain agent concepts and / or

relationships more extensively. For instance, two MAS DSMLs can be compared through

their support on Belief-Desire-Intention (BDI) agent models (Rao and Georgeff, 1998) when

these metamodels are first compared with the reference metamodel. They receive a

compatibility degree, and finally, these degrees are compared with each other to give an idea

on BDI coverage of these languages.

Many agent metamodel proposals (e.g., Bernon et al., 2005; Omicini et al., 2008; Beydoun et

al., 2009; Hahn et al., 2009; Challenger et al., 2011; Garcia-Magarino, 2014; Tezel et al.,

2016) exist in AOSE to model agent internals, communication between the agents and

interaction of agents within MAS environments. However, it is difficult to use most of these

metamodels for modeling wide-ranging agent systems since they include the description of

agent meta-entities only for a specific MAS platform and/or an AOSE methodology such as

Gaia (Zambonelli et al., 2003), INGENIAS (Pavon et al., 2005), Prometheus (Padgham and

Winikoff, 2005) and Tropos (Bresciani et al., 2004). Some of these metamodels lack support

on modeling runtime components critical to implement agent plans and agent interactions.

Among all of these existing MAS metamodels, the FAML metamodel (Beydoun et al., 2009)

was chosen as the reference metamodel, and utilized inside the AgentDSM-Eval framework.

This metamodel is derived from the synthesis of the MAS concepts introduced with many

relevant AOSE methodologies. It provides an inclusive definition of all fundamental agent

concepts and their relations from both static and dynamic MAS modeling aspects.

The FAML metamodel consists of 2 layers, namely Design Time and Runtime. Definitions of

entities such as agents, organizations, resources, interaction protocols, environment

statements, tasks, goals, and message schemas are given in the design-time layer, while

entities like beliefs, roles, plans, events, message actions are defined in the runtime layer.

Also, each of these layers has two scopes, agent-external, and agent-internal. The FAML

metamodel presents four different views to group classes into these four other areas of

concern. Twenty-six concepts for design time and twenty-one concepts for runtime are

defined in this metamodel including the relations between them.

In AgentDSM-Eval, FAML concepts are matched with the abstract syntax of a MAS DSML,

which is being evaluated. To realize this matching, meta-entities defined inside the related

MAS DSML’s metamodel should be determined. This process is manual inside the online

AgentDSM-Eval tool when a serialized version (e.g., in XMI, Ecore, or JSON) of the MAS

DSML’s metamodel is not available. However, it becomes semi-automatic when the

serialized version of the DSML metamodel is available. The tool generates the definition of

the meta-entities from the metamodel files and prepares them to match FAML concepts. If

meta-entities named such as Agent, Belief, Goal, Plan are determined during the automatic

generation of the definitions from the MAS metamodel, these entities are also automatically

matched with the corresponding FAML concepts as the result of a keyword-based search.

Other remaining meta-entities need to be checked manually. In all cases, the matching results

need to be verified by a user who plays administrator roles in the AgentDSM-Eval tool before

these results are used in the conducted multi-case studies. It is worth indicating that the MAS

developers participating in the evaluation of MAS DSMLs do not need to concern with this

matching process, as it is isolated from them. Only users of the AgentDSM-Eval online tool

with administrator rights deal with this matching process and make the results of comparison

with FAML ready for all remaining evaluations. Moreover, this comparison with FAML is

required to be made just once for a specific MAS DSML, which means the administrators do

not need to repeat this process as long as the MAS DSML does not change.

Upon completing the semi-automatic matching between FAML concepts and a MAS DSML

metamodel, the similarities / commonalities between the FAML and the related DSML are

determined automatically by the AgentDSM-Eval tool. Hence, the overall metamodel

comparison is semi-automatic in which the matching process is manual in some situations (as

discussed above), while the similarity / commonality determination is always performed

automatically by the tool. After the comparison is completed, each MAS DSML receives a

quantitative comparison degree. These degrees can be used to evaluate different MAS

DSMLs and help compare these DSMLs with each other.

2.2.2 Case Study Analysis

The case study analysis in the AgentDSM-Eval framework provides the assessment of results

from conducting a series of MAS development studies (each named as a case study) in which

a specific MAS DSML is utilized during the design and implementation of agent systems

with varying complexities and business domains. The time elapsed for developing a MAS

(Development Time) and the quantity of the produced outputs (Development Throughput) are

considered during the case study analysis.

Development Time refers to the time an evaluator group spends for the problem analysis,

modeling / design, development, and testing steps for a specified case study. As the number

of evaluators (agent developers) increases, these measured times provide data suitable for the

assessment of using the MAS DSML within each development step.

MAS DSMLs are expected to shorten development time, especially by reducing design time

and implementation time. Design time can be shortened by providing an understandable

DSML interface that facilitates MAS modeling via a graphical editor. A code generation

utility can also enable developers to write less delta code by providing as many case study

requirements as possible. From this perspective, the relationship between modeling / design

time and implementation time can be analyzed. In the evaluation process, the development

times can be analyzed specifically for the relevant case studies and can be used to analyze the

average times elapsed for all case studies. As shown in the next section, AgentDSM-Eval

presents a suitable environment to realize the above analysis on the development time by

automatically processing the case study results, making the required calculations and

automatically producing comparison tables. In these tables, it is also possible to examine

whether using a MAS DSML shortens the development time by comparing times elapsed for

developing the same agent systems without using this DSML.

The analysis of the Development Throughput is carried out from two different perspectives.

Firstly, by examining the modeling outputs achieved from each language evaluator for each

case study, the usage frequency of modeling elements belonging to a MAS DSML is

determined. This assessment is important since it helps to infer which of the developers

mostly adopt meta-entities and/or viewpoints of the MAS DSML. It may also give clues on

improving MAS DSMLs in terms of their language elements, e.g., less commonly used or

unused language elements can be eliminated or replaced in the future versions of the

language. The related assessment can be performed for a specific case study, or an average

result covering all case studies can also be achieved within AgentDSM-Eval. To the best of

our knowledge, such kind of MAS DSML evaluation according to usage frequencies of

modeling elements was not previously performed in any AOSE study.

MAS DSMLs generally enable automatic generation of code from MAS models. Although

various code generation approaches (e.g., visitor-based, meta-programming, in-line

generation, code annotations, template-based) are followed in MDE of different software

systems (Sebastián et al., 2020), we see that current MAS DSMLs mostly use template-based

code generation (Syriani et al., 2018) techniques during the creation of artifacts such as

source code for the implementation of MAS. For this purpose, the serialized model of a MAS

is parsed by a template engine, and a code template is filled with a textual definition

conforming to each agent component identified in the model. However, the assessment with

AgentDSM-Eval is, in fact, independent from the type of code generation used inside a MAS

DSML. It only considers the performance evaluation of the applied code generation within

this context, i.e., the amount of the generated code is measured. This performance

measurement does not deal with the way of how the code is generated. The high performance

of code generation allows the evaluator to add less delta code for MAS's full implementation

So, the code generation performance of a MAS DSML stands out as a relevant parameter to

be measured. The second perspective of the Development Throughput analysis considers the

required evaluation. Based on the conducted MAS development case studies, the code

production performance of a MAS DSML is analyzed automatically inside AgentDSM-Eval

by comparing the generated code with the final code. Like the previous aspects of the case

study analysis, it is possible to realize this development throughput analysis again for a

specific MAS development case study. It may also be performed to provide an average result

covering all case studies.

2.3 Qualitative Evaluation

The qualitative evaluation of MAS DSMLs inside the AgentDSM-Eval framework is

performed by receiving feedback from the developers who experienced using the MAS

DSML being evaluated. For this purpose, the method of collecting data from users through a

questionnaire is preferred. To formalize the required questionnaire, we benefited from the

FQAD framework (Kahraman and Bilgen, 2015), which is proposed for the qualitative

assessment of DSLs with a list of quality characteristics. Within FQAD, a number of

characteristics, which can be accepted as DSL assessment criteria, were defined. Each

identified characteristic owns the description of sub-characteristics with quality measures.

According to any FQAD characteristic, the evaluation of a DSL depends on evaluating this

language employing the quality measures of this FQAD characteristic.

FQAD characteristics, named Functional Suitability, Usability, Reliability, Expressiveness,

and Compatibility, are adopted in AgentDSM-Eval. However, both these characteristics and

their definitions, which are initially derived to evaluate DSLs in general terms, are re-

engineered and specialized in AgentDSM-Eval for the needs of assessing MAS DSMLs. In

addition, AgentDSM-Eval defines a new quality assessment characteristic, called MAS

Development with including five new quality measure descriptions. For instance, these new

quality measures aim at receiving user’s feedback on whether the DSML facilitates MAS

development or reporting the DSML’s coverage on concepts and relations required to design

a MAS software.

As a result of re-engineering FQAD characteristics and adding the new MAS Development

characteristic, the qualitative evaluation of MAS DSMLs is carried out in terms of 6 major

characteristics and their quality measure descriptions. These six characteristics and a total of

twenty-four quality measures are listed in Table 2.1. Upon completion of using a specific

MAS DSML inside the multi-case studies, agent developers (evaluators) are requested to

assess their experience on using this DSML. They score each quality measure of each

characteristic between 1 and 5, where 1 means the worst point and 5 means the best point, for

the related DSML feature.

Table 2.1: Quality characteristics and quality measures used inside AgentDSM-Eval.

Quality
Characteristic

Quality
Measur

e No
Quality Measure

Functional
Suitability

1
All concepts and scenarios of the domain can be expressed in the MAS DSML
(completeness).

2
The MAS DSML is appropriate for the specific applications of the domain
(e.g. to express an interaction between two agents) (appropriateness).

Usability

3
The required amount of effort for understanding the MAS DSML is small
(comprehensibility).

4
The MAS DSML’s concepts and symbols are easy to learn and remember
(learnability).

5
The MAS DSML has capability to help users achieving their tasks in a
minimum number of steps.

6
The MAS DSML is appropriate for the needs of agent developers (likeability,
user perception).

7
Both operating and controlling the language are facilitated by the MAS
DSML’s features (operability).

8 The MAS DSML owns user-friendly graphical notations (attractiveness).

9
The language provides mechanisms for the compactness of the
representation of the program (compactness).

Reliability

10
The MAS DSML protects users against making errors and provides model
checking.

11
The MAS DSML prevents the construction of wrong relations between
language elements (correctness).

Expressivenes
s

12 It is easy to reflect a MAS design into an agent program easily with the DSML.

13
The MAS DSML provides one and only one good way to express every MAS
concept (unique).

14
Each MAS DSML construct is used to represent exactly one distinct concept
in the agent domain (orthogonal).

15
The language constructs correspond only to necessary agent domain
concepts.

16 The MAS DSML does not contain any conflicting elements.

17
The abstraction level of the MAS DSML is satisfactory for general modeling
of MAS, i.e. it is free from specific definitions of agent deployment platforms
such as JADE or JACK.

Compatibility 18 Using the MAS DSML to develop agent models fits in the general

development process of MAS. The language can be used as part of an AOSE
methodology with process phases and roles.

19 The MAS DSML is compatible with the MAS domain.

MAS
Development

20 The MAS DSML makes MAS development easier.

21
The MAS DSML is appropriate for the construction of specific agent
architectures and/or autonomous agent planning models such as reactive
agents or Belief-Desire-Intention (BDI) models.

22
IDE of the MAS DSML is easy to use and provides a handy interface for
software development from different MAS perspectives.

23

The MAS DSML is powerful enough to implement the general MAS structure
with including the construction of agent plans, agent internals,
communication between agents and agent interactions with the resources
residing in the MAS environment.

24
The MAS DSML enables graphical modeling of both static and runtime
aspects of agents and assists the implementation of agent components with
sufficient code generation.

3. AgentDSM-Eval Tool

This section introduces the online tool that supports the assessment of MAS DSMLs

following the evaluation framework discussed in the previous section. Having the same

name as the evaluation framework, the AgentDSM-Eval tool has been designed and

implemented as a web application that is publicly available (AgentDSM-Eval, 2019).

AgentDSM-Eval tool is implemented based on the Google Firebase platform and hence

empowered with Firebase Cloud functions leading to a serverless architecture. Vue.js

Javascript library is used for the construction of AgentDSM-Eval’s interface. Also, we

benefited from ApexCharts.js library for the visualization of the interactive evaluation graphs

inside the tool.

The AgentDSM-Eval tool presents a user-friendly GUI to evaluate a MAS DSML from the

quantitative and qualitative aspects of the AgentDSM-Eval framework. The tool can be used

by both MAS DSML developers and MAS DSML users. MAS DSML developers can create

profiles for their DSMLs inside the tool, including the languages’ introductory data and

metadata definitions. Once a profile is created for a MAS DSML, it is possible to analyze and

assess the results of using this DSML inside a multi-case study, performed by various MAS

developers who play the evaluator role during the case studies. Evaluation results are stored

in the system’s repository and can be examined with appropriate graphs, charts, etc. by any

users at any time. In the following subsections, the tool's features are discussed within two

defined user perspectives: MAS DSML developers and MAS DSML users.

3.1 MAS DSML Developer Perspective

Before evaluating a MAS DSML, a profile for this language needs to be created inside the

tool to add this language's specifications. For this purpose, an owner of a MAS DSML, who

is mostly a MAS DSML developer from the developer team of this language, first enters the

general information about the DSML, including its name, version, owner, and distribution

URL, via an online form inside the tool. He/she then uploads the documents for the DSML's

metamodel definition and the multi-case study descriptions from the same interface.

The expected format for the MAS DSML metamodel definition is JSON. As discussed

previously in subsection 2.2.1, this metamodel file is parsed by the AgentDSM-Eval tool. The

meta-entities defined in this metamodel are automatically derived from this file to match

them with the entities of the reference MAS metamodel (FAML). In case the DSML's

metamodel definition is not available in JSON, it is also possible to manually enter concepts

of the related DSML, select them from the given combo boxes and match them again with the

reference metamodel entities. Figure 3.1 shows an example from this entity matching screen.

Figure 3.1: The interface for the matching between FAML reference metamodel entities and a

MAS DSML’s concepts

Definitions of the multi-case studies guiding to evaluate a MAS DSML are given in PDF

documents. Each case study's name is entered, and the definition file for this case study is

uploaded to the tool. During the execution of the case studies, the evaluators (MAS

developers) will benefit from these definitions to develop agent systems according to the

agent system requirements given in these files.

3.2 MAS DSML User Perspective

Software developers, who are the end-users of MAS DSMLs, benefit from the online

AgentDSM-Eval tool mainly for 1) participating in the multi-case evaluation of a specific

MAS (as being an evaluator) and 2) examining the evaluation results of MAS DSMLs

(possibly before choosing a DSML to develop a MAS).

Developers participate in the evaluation processes in AgentDSM-Eval by joining an evaluator

group, performing MAS design and implementation activities within the multi-case studies

and then giving feedback covering their experience on using DSMLs. Upon completion of the

multi-case studies, the developers can use the tool to enter the data and upload files required

for the quantitative evaluation and also answer the survey for the qualitative assessment.

Before using the evaluation forms of the AgentDSM-Eval tool, developers, who will

participate in the study as the evaluators, should first read and approve the online consent

letter which confirms their participation is entirely voluntary and they are free to refuse to

answer the survey. Moreover, by approving this letter, the developers also accept that their

evaluation data can be a part of public research reports but their names and personal data will

be hidden and remaining data they entered will be anonymized in these reports.

The approval of the consent letter is followed by the section where the participants enter their

personal data including e-mail address, gender, age, field of study (e.g. computer science,

software engineering, electrical engineering), completed education (e.g. B.Sc., M.Sc., Ph.D.),

knowledge and experience on MAS and current occupation (e.g. student, researcher, worker

in the industry).

After obtaining the personal information from each evaluator, the necessary data for

quantitative and qualitative analysis are entered. First of all, an evaluator is required to enter

the time he/she spent while developing a MAS in each case study. Elapsed time is entered in

minutes individually for each step of MAS development, namely problem analysis, system

modeling / design, implementation and testing (see Figure 3.2). Only numeric data can be

entered and cannot be left blank for these measured times.

Figure 3.2: Input screen for the times elapsed for MAS development

In addition to the elapsed times, the evaluator is also requested to upload three main

compressed files achieved at the end of each MAS development case study. These files

should be uploaded in .zip format via the interface shown in Figure 3.3. The first compressed

file covers all software model artifacts created by using the DSML being evaluated. The

second compressed file includes all code and any other system documents which are auto-

generated according to the MAS models designed by this evaluator. Finally, the full project is

uploaded as the third compressed file in which delta code written by this evaluator for the full

MAS implementation are also included.

Figure 3.3: Upload screen for the project files pertaining to each MAS development case

study

In the last section, the evaluators answer an online questionnaire to obtain their feedback on

using the MAS DSML being evaluated. The questionnaire covers all quality measures of 6

quality characteristics we defined for assessing the DSMLs from the user perspective. Each

of these 24 quality measures (previously listed in Table 2.1) is shown along with six radio

buttons. The evaluator scores each quality measure by clicking one of these buttons

representing points from 1 to 5 on a Likert scale where one means "Very Bad" and five

means "Very Good". When the evaluator clicks the sixth button (N/A), it means he/she

prefers not scoring the DSML for the related quality measure, i.e., he/she thinks this quality

measure is not applicable for the DSML being evaluated. In this case, this scoring will be

omitted while calculating the final average point of the DSML for this quality measure

achieved in the whole evaluator group.

After completing all input sections discussed above, the system generates a PDF document

containing the evaluator's answers. This document is automatically downloaded to the

evaluator's computer for backup purposes.

When data from the evaluators’ multi-case studies are obtained and the questionnaire is

answered by all evaluators as described above, AgentDSM-Eval tool synthesizes all data,

automatically processes them to generate quantitative and qualitative evaluation results and

present these results to all interested parties including MAS developers and DSML

implementers. These online results are always available and may be updated automatically as

additional multi-case studies will be performed in the future for the same MAS DSML.

The evaluation results for each MAS DSML are shown to the users in 5 sections covering

general information about the language, comparison with the reference model, development

time performance, development throughput performance, and questionnaire-based quality

assessment.

General information (e.g. name, version, access link) describing the evaluated MAS DSML is

shown first. There is also the opportunity to switch into the evaluation interface. For instance,

a user can proceed to the evaluation stage by selecting any case study. Conforming to the

AgentDSM-Eval analysis specifications previously discussed in Sect. 2.2.1, results pertaining

to the comparison of the language’s metamodel with the reference metamodel are shown in

two different viewpoints in terms of FAML’s design time and run time perspectives. Firstly,

the average result of the comparison from these two perspectives is shown by a donut graph.

The percentage of supported and unsupported FAML concepts inside this MAS DSML is

summarized. In the dropdown menus, comparison results are given in detail, i.e. each MAS

DSML meta-entity is shown in green when a counterpart is found in FAML or shown in red

otherwise. During the presentation of these comparison results, a user can also see the

definition of each FAML concept in the related dropdown list.

Development time performance of the DSML, determined according to the case study

analysis discussed in Sect. 2.2.2, is shown with the horizontal bar graphs. Average of the

times elapsed during each stage (e.g. modeling, implementation) of MAS development with

using the MAS DSML inside the multi-case studies are shown in these graphs. The interface

provided by the AgentDSM-Eval tool also enables adding / removing the results of a specific

case study to / from this comparison graph. Moreover, total average results achieved from the

collection of all conducted case studies can be analyzed too.

Taking into account the analysis of development throughput (see Sect. 2.2.2), results showing

the output performance of the MAS DSML are classified in two categories inside the tool.

The first one presents the usage frequencies of modeling elements belonging to a MAS

DSML. These results are achieved as the tool processes all MAS model instances created by

all evaluators inside the multi-case studies. In addition to the aggregate frequencies, the

comparison of usage frequencies of each modeling element can also be seen separately for

each individual case study on the bar graphs.

In the second category, code generation performance of the MAS DSML is displayed. The

AgentDSM-Eval tool automatically processes MAS development project files uploaded by

each evaluator to the system and it calculates the overall code generation performance. With

the provided horizontal bar graphs, it is possible to examine and compare the percentage of

the generated code inside the complete code required for the full implementation of the MAS

for each case study. The percentages here represent the code generation capability on the

average, i.e. the average size of the code the DSML auto-generates from MAS models

created by all evaluators. However, it is also possible to see the code generation performance

per each conducted case study. Result graphs visualize the ratio of the size of the generated

code over the size of the generated plus written code required for the full MAS

implementation.

Finally, the results of the questionnaire-based quality assessment of the MAS DSML are

shown to the users via two different interfaces. The tool processes all answers given by all

evaluators for the AgentDSM-Eval quality characteristics (discussed previously in Sect. 2.3)

and presents the average scores in radar graphs given in the first interface. Hence, both the

total average score and the average scores specific for 6 different quality characteristics are

shown in these graphs. In the second interface, the detailed analyses of the given scores are

possible. For each quality characteristic, the distribution of the scores are shown in bar charts.

Distribution is given in both total and case study bases. Furthermore, the distribution of the

scores given for each specific quality measure (see Table 2.1) of each quality characteristic is

also shown to the users, hence the prominent measures per quality characteristics can be

easily determined. Apart from showing the overall distribution, these charts again show score

distribution of the quality measures for each specific case study.

All above discussed interfaces and the comparison diagrams of the AgentDSM-Eval for the

evaluation of MAS DSMLs will be exemplified in the next section.

4. Evaluation of PDT using AgentDSM-Eval Framework

To give some flavor of utilizing the AgentDSM-Eval framework and its tool, the evaluation

of one of the well-known MAS DSMLs, called PDT is discussed in this section. First, PDT is

briefly introduced and then we discuss how the multi-case study method was applied. Finally,

the evaluation results are presented.

4.1 PDT

Prometheus (Padgham and Winikoff, 2005) is an AOSE methodology which aims at

simplifying the development process of intelligent agent systems. It specifically focuses on

designing agent goals and plans mostly according to the BDI agent model (Rao and Georgeff,

1998). Three fundamental processes inside the Prometheus methodology are system

specification, architectural design and detailed design.

During system specification, the objective of the system, usage scenarios and functionality of

the system are shaped. Based on the fact that the agents are proactive and target oriented, the

process starts by setting goals. Each identified goal facilitates setting subgoals and

identification of use cases. After the system features are identified, the architectural design

process starts. The aim of this process is to decide the types of agents in the MAS, clarifying

the communication protocols between the agents and determining the general system

structure. In Prometheus methodology, one or more functionalities are combined to form an

agent type. The resulting agent types are modelled using the coupling diagrams and agent

acquaintance diagrams. In addition, the characteristics of the communication between two

agents are clarified by using the interaction diagrams and interaction protocols. Finally, the

general system structure diagram is created in which the types of agents and the interfaces

and the limits of the system are described in terms of actions and perceptions. The final

process considers the detailed design where the internal design of the agents in terms of

capabilities, the processes and the events for interaction protocols and the details of the

capabilities in terms of plans and data are determined. Agent overview diagrams and

capability description diagrams are used to model the internal architectures of the agents.

Capability diagrams are created for elaborating the capabilities.

Prometheus methodology is supported by a software tool, called “Prometheus Design Tool”

(Prometheus/PDT), hereafter we shortly call PDT (Thangarajah et al., 2005; PDT, 2011),

which is a product of Intelligent Agents Research Group at RMIT University, Australia. PDT

also presents a DSML whose graphical concrete syntax enables users to visually model e.g.

agents, goals, plans and communications based on the descriptions of the above mentioned

Prometheus diagram types. PDT is publicly available as an Eclipse plugin and the developers

may create MAS models conforming to Prometheus specifications inside its IDE by drag and

drop techniques. Figure 4.1 includes a screenshot from PDT IDE which depicts how a visual

model of Prometheus system roles can be created by using the modeling palette at the right.

In addition to supporting the fundamental process of Prometheus, PDT also includes a code

generator to achieve implementation of the modeled agents and plans for the JACK agent

execution platform (JACK, 2001). JACK is a MAS platform built on the Java programming

language. BDI agents can be implemented using JACK API as being the extensions of

predefined Java classes. It is a product of AOS Group and used in the development of many

industrial autonomous agent applications. Although JACK is a commercial product, it also

provides an academic license.

Taking into consideration all the above features, PDT was chosen to demonstrate the use of

AgentDSM-Eval framework in this study. Evaluators used PDT to develop agent systems and

achieved outputs were evaluated according to the AgentDSM-Eval criteria.

Figure 4.1: A screenshot from PDT IDE (taken from (Padgham and Winikoff, 2005))

4.2 Metamodel Analysis

Before evaluating PDT DSML, its language profile was created inside the AgentDSM-Eval

tool by entering its name, version and other identifying information as described in Sect. 3.1.

Then, this language’s metamodel definition was converted to JSON format and matching its

meta-entities (including Actor, Action, Percept, Role, Data, Goal, Scenario, Agent, Message,

Capability and Plan) with FAML reference metamodel was completed inside the tool. These

matchings were controlled by a MAS DSML developer before the AgentDSM-Eval tool

processed them and produced the comparison results. Achieved results can be seen by any

user via the provided online interface.

The results, originating from the comparison of PDT metamodel with the design time and

runtime concepts of FAML, will be discussed later in Sect. 4.4. When the general information

on this DSML was entered and its metamodel comparison with FAML was completed, the

interface for the MAS developers to evaluate PDT was ready as seen in Figure 4.2.

Figure 4.2: Welcome screen to start case study based evaluation of PDT

4.3 Evaluation Process

The evaluation of PDT was performed within the context of developing two different MAS.

Sixteen agent developers voluntarily participated in this study as evaluators. All evaluators

were students of computer related fields and passed graduate courses called Advanced

Software Engineering, Agent-oriented Software Development and Multi-agent Systems,

taught in the Computer Engineering Department and International Computer Institute (ICI) of

Ege University. Six of the evaluators were Ph.D. candidates while the remaining were M.Sc.

students. The ages of ten evaluators were between 22 and 25, and the rest were older than 26.

On the average, the evaluators had at least 1.5 years MAS design and implementation

experience covering the application of AOSE methodologies and using some agent

development APIs like JADE (JADE, 2000) and JACK (JACK, 2001). In addition, all

evaluators were familiar with software engineering methodologies, mostly based on UML

and having at least 5 years’ experience on using various IDEs. 60% of the evaluators were

also working in the industry at the time of this evaluation performed and they possessed the

experience of developing software in industrial scale (4 years on average).

Before the evaluation process, a review on PDT was given to this evaluators group, and then,

they developed a mini project to familiarize with PDT IDE and its modeling features. This

step ensures countervailing their level of familiarity to the target language and minimizes the

threat of validity regarding evaluators.

4.3.1 Selected Case Studies

Evaluators developed two different MAS inside two case studies. The first case consists of

the design and implementation of an autonomous agent-based garbage collector system while

the second is the realization of a hotel reservation scenario in which customer agents reserve

rooms on behalf of its users. Each case study serves for a different MAS application domain

including various features of agents. Moreover, modeling and implementation complexities

vary in each case study where the developers face the changing difficulties of developing

both agent internals and MAS organizations. As can be seen from the following descriptions

of the case studies, the implementation of the case study 1 is expected to be relatively easy

when we consider the number of agent types and the coverage of each agent internal structure

including agent beliefs, goals and plans. However, the case study 2 requires the design and

implementation of more complex agent internals as well as complicated agent interactions

inside the MAS.

In the following, the description of each case study is given including the system

requirements.

1. Case Study 1 - Garbage Collector System: You are requested to analyze, design and

implement a multi-agent system aimed at collecting garbage in different types in a

specific environment. There are 2 types of agents in the system. The Manager agent

will send a message to the Collector agents. The message is about garbage (there will

be 3 types of garbage: plastic, paper and glass) in the environment. Collector agents

will reply with a message to the Manager agent indicating whether the relevant

garbage can be collected or cannot be collected, according to the belief which is

expressing the type of garbage it can collect. The answers about rejection or

acceptance of collecting the garbage will be sent to the Manager with two separate

plans. If a message, saying a garbage can be collected, is received (the case where the

collector agent confirms the garbage collection), then the Manager agent will assume

that the garbage has been collected. The garbage in the environment can be created

statically during the initialization of the Manager agent.

2. Case Study 2 - Hotel Reservation System: You are requested to analyze, design and

implement a multi-agent hotel reservation system. In the system there should be

Customer Agents to represent the users seeking hotel rooms, Hotel Agents to

represent the hotels and Matchmaker Agents to mediate the interaction between

customer and hotel agents. A Customer Agent, who wants to reserve hotel rooms on

behalf of a user, first asks for the appropriate hotel agents to a Matchmaker Agent

who registers Hotel Agents representing real hotels in this scenario. Following their

initialization, each Hotel Agent should send its communication address and the

location of the hotel it represents (city name) to the Matchmaker Agent. A Customer

Agent requesting a room reservation, searches for Hotel Agents by communicating

with the Matchmaker Agent by giving the desired location. Matchmaker Agent

responds back with the addresses of the appropriate hotel agents. Upon receiving the

addresses of the hotel agents, the Customer Agent immediately sends query messages

to all hotel agents indicating the hotel rank (e.g. five-star) and the room price.

Conforming to the Contract Net Protocol, the hotel agents may or may not answer to

this query within a predefined deadline (e.g. 30 seconds). Hotel agents can randomly

decide whether to reply or not. Customer agent receives the replies and chooses one

of the replying agents to make the reservation. If just one hotel agent replies

positively, the reservation will automatically be made on this hotel. If multiple

proposals are received, then the Customer Agent’s decision should be based on the

lowest-price or first come first served basis when more than one lowest prices exist.

Location, rank and price information for each Hotel Agent can be given during the

initialization of these agents.

Above descriptions of the case studies were given to the evaluators and they were requested

to develop the required agent systems with or without using PDT. Each case study was

performed in two sessions. In the first session, the evaluators developed the requested MAS

by using PDT, completing the auto-generated JACK code for full implementation and testing

the system. In the second session, they developed the whole system without using PDT, i.e.

they can apply any AOSE methodology but they should code the system from scratch. During

each session, the evaluators saved the times they spent for each stage of MAS development.

The evaluators approved the online consent letter and filled the personal information form.

Then they entered all measured times and uploaded project files to the AgentDSM-Eval tool

via the interface previously shown in Figure 3.3. All sessions were held in the software

research laboratory of ICI at Ege University. Upon completion of the MAS development

sessions, all evaluators answered the online questionnaire to give their feedback on using

PDT DSML.

4.4 Evaluation Results

Based on the evaluators’ outputs achieved from the multi-case MAS development studies, the

AgentDSM-Eval tool generated the results for evaluating PDT. In the following subsections,

results on the comparison with the reference model, development time performance,

development throughput performance and questionnaire-based quality assessment are given

in two main titles as quantitative evaluation and qualitative evaluation.

4.4.1 Quantitative Evaluation Results

As discussed in Sect. 2.2, the quantitative evaluation covers the analysis on the comparison

with the reference metamodel, the development time and development outputs.

4.4.1.1 Results of comparing PDT metamodel with the MAS Reference Metamodel

The AgentDSM-Eval tool processed the serialized metamodel of PDT, given in JSON and

compared it with the FAML metamodel to generate the ratio of compatibility level. Figure

4.3 shows the results. As can be seen from this figure, PDT supports 53.5% of both design

time and runtime components of FAML. That can be interpreted as PDT partially enabling

the general modeling of agents and the interaction between the agents when we consider the

FAML specifications for MAS design. Moreover, PDT’s support on MAS runtime concepts

seems better than design time, i.e. it is capable of modeling agent goals, beliefs and executed

plans more than the specification of interaction protocols, MAS organization ontologies and

resource specifications.

Figure 4.3: Comparison results of PDT metamodel with the reference metamodel

In Figure 4.3., there are dropdown menus (below the donut chart) from which the details of

metamodel matching are available. The users can benefit from these menus to see which

FAML concepts are represented in PDT from both design time and run time perspectives.

Each concept, which has a match in PDT DSML, is shown in green color while the others are

marked with red (see Figure 4.4) inside these menus of AgentDSM-Eval tool. In addition,

when a matching line is clicked, the definition of each concept of the reference model is

shown to guide users during examination of these results.

Figure 4.4: Detailed list of matching between PDT and FAML concepts

4.4.1.2 Results of Case Study Analysis

According to data obtained from the evaluators’ MAS development sessions, AgentDSM-

Eval tool generated the results on PDT’s performance on development time and development

throughput. The screenshot given in Figure 4.5 displays the horizontal bar graph of the

elapsed times in each case study. Measured times are given in minutes for each stage of

system development. Average of the case studies is given in the orange bar named “All Case

Studies”. It is worth indicating that this graph is dynamically generated by the AgentDSM-

Eval tool. It is possible to add or remove any case study from this comparison via using the

menu at the right side of the graph. Hence, when a new case study is performed for the

evaluation of a MAS DSML, AgentDSM-Eval integrates measured times for this case study

to the existing results for this MAS DSML without any human intervention.

Figure 4.5: Comparison results of the development times elapsed for the case studies using

PDT

The graph in Figure 4.5 shows that in every stage of MAS development, the developers

(evaluators) spent more time while developing the Hotel Reservation System (Case Study 2)

in comparison with the Garbage Collector System (Case Study 1). This confirms that the

complexity of both implementing internal architectures of each agent and constructing the

messaging between the agents was higher in the second case study. One interesting result

originates from comparing modeling and implementation times. Evaluators spent similar

times for modeling the requested MAS with PDT and completing the generated JACK code

to achieve the full implementation. Although the modeling and programming capabilities of

the evaluators have the effect on this result, one can deduce the utilization of PDT’s modeling

IDE is more challenging than the expected and/or PDT’s translational semantics lead to the

generation of a limited number of artefacts. However, we need to consider the development

of the same systems without using PDT to evaluate both PDT’s development time

performance in general and compare its effect on modeling / design and implementation

stages. Once a user needs to reach the related results, AgentDSM-Eval also produces the

comparisons between the times elapsed for implementing MAS with using a MAS DSML

and without using this DSML. During the execution of the multi-case studies, our evaluators

participated in developing the same agent systems without using PDT in additional case study

sessions as discussed in Sect. 4.3.1. Hence, AgentDSM-Eval tool also processed these results

and created the graphs for comparing times elapsed for each MAS development with and

without using PDT. Screenshots given in Figure 4.6 and Figure 4.7 include these

comparisons.

The comparison within the scope of each specific multi-case study is available as shown in

Figure 4.6. In this figure, we can see the comparison of times elapsed for each stage of MAS

development during the second case study, Hotel Reservation MAS. Based on these results, it

is shown that the evaluators spent similar times during problem analysis (with or without

using PDT). This is expected since the problem analysis depends on the complexity of the

MAS and is independent of the development language. So, use of PDT had a minor effect on

the problem analysis. On the other hand, MAS modeling took more time during development

using PDT. The main reason is the developers designed the agent models of the Hotel

Reservation System in various PDT graph types (see Sect. 4.1) and static semantic controls

were made on these models before code generation. Thus, modeling with PDT extended the

length of the design time. However, that sacrifice in design time brought a significant gain

during the implementation of the MAS. On the average, the evaluators spent almost twice as

much time during implementation without using PDT. Auto-code generation plus code

completion took approximately 65 min. while preparing all required JACK code from scratch

took 132 min. Use of PDT also decreased the testing of the related MAS implementation.

Figure 4.6: Comparison of times elapsed for developing Hotel Reservation MAS with and

without using PDT

Development time comparison from the averages of all conducted case studies is also

available from the interface provided by the AgentDSM-Eval tool. In Figure 4.7, the

comparison of average times of MAS development with and without using PDT is shown.

The results show that evaluators saved time mostly in the implementation stage when they

used PDT. In general, use of PDT reduced the total MAS development time to approximately

three quarters. Addition of the measurements from new case studies may naturally affect

these results. Evaluators may easily enter these new measurements into AgentDSM-Tool and

the tool automatically updates the existing comparison results by integrating these new ones.

Figure 4.7: Comparison of times elapsed for developing MAS with and without using PDT

The analysis according to the development throughput starts with the comparison of the

usage frequencies of PDT meta-entities. As previously discussed in Sect. 2.2.2, one of the

novel features of the AgentDSM-Eval framework is to provide users which meta-entities of a

MAS DSML are mostly adopted and used by the agent developers during MAS

implementations. For this purpose, the tool processes all instance models created by the agent

developers, determines the frequencies of each modeling element (instances of the language’s

meta-entities) and generates graphs reflecting these frequencies. The whole process is

automatic. During the evaluation of PDT, the same process was executed and the tool created

the comparison graph shown in Figure 4.8. In this graph, each horizontal bar shows the

number of occurrences of a modeling entity for each case study. Moreover, next to individual

case study results, the graph also shows the total number of times a given modeling entity is

used (in orange-colored bars). By using the menu at the right, the results pertaining to a

specific case study can be added or removed for the comparison.

Figure 4.8: The usage frequencies of PDT language elements during multi-case studies

According to these results, the developers used mostly the instances of Goal and Action

meta-entities during modeling the Garbage Collector MAS while Capability and Actor

elements were used the least. For the Hotel Reservation MAS, again Goal and Action entities

were used as well as Agent instances while Actor, Scenario and Capability entities were less

frequently used. Originating from the aggregate results, one can say that the developers

mostly preferred using PDT’s Action, Goal and Agent elements during modeling whereas

Capability and Actor elements were used rarely. The results should be interpreted by also

taking into account both the complexities of each case study and appropriateness of each

model element to the specific needs of these case studies. Hence, the results may change with

the inclusion of new MAS implementations. Based on the current results, designers of PDT

may think of re-engineering the formulation of Capability and Actor models inside PDT

metamodel definition.

Code generation performance of PDT was also evaluated during the development throughput

analysis. For this purpose, AgentDSM-Eval tool automatically parsed project files uploaded

by all evaluators, processed them to determine the ratio of the auto-generated lines of code

(LoC) inside the whole implementation and displayed these ratios for individual case studies

as well as the average of these case studies. Figure 4.9 is the screenshot taken from the

AgentDSM-Eval tool which shows PDT’s code generation performance. According to this

graph, we can see that 39% of the code required for implementing the Garbage Collector

MAS were automatically generated by only modeling with PDT. That percentage is the

average of all evaluators. Similarly, an evaluator needed to complete 64% of the code to

implement the Hotel Reservation MAS on the average. Based on these measurements,

approximately 38% of a MAS implementation can be achieved automatically by just using

PDT.

Figure 4.9: PDT language’s code generation performance

4.4.2 Qualitative Evaluation Results

Use of PDT was assessed qualitatively according to the AgentDSM-Eval framework’s quality

characteristics and their quality measures (introduced in Sect. 2.3). For this purpose, agent

developers, who participated in the multi-case study, answered the online questionnaire

which is composed of 24 quality measures listed in Table 2.1. The evaluators scored each

quality measure between 1-5 points. All scores were processed inside the AgentDSM-Eval

tool and average scores were calculated. In addition to PDT’s general assessment score, the

average scores achieved both for each quality characteristic and this characteristic’s each

specific quality measure were calculated.

In the first screen, AgentDSM-Eval displays average scores for each quality characteristic

and total average via a radar graph. Figure 4.10 showed the results for PDT. When a user

clicks one of the quality characteristics, the average score for this characteristic is displayed.

Moreover, by using the dropdown menu at the top, scores for the quality measures of the

quality characteristic selected on the radar graph are displayed in bar charts.

Based on the evaluators’ answers to the questionnaire, PDT got 3.5 points for Functional

Suitability, 3.13 points for Usability, 3.13 points for Reliability, 3.14 points for

Expressiveness, 3.28 points for Compatibility and 3.06 points for MAS Development. The

average of these quality characteristics is 3.21 points which is the overall result for the quality

assessment.

Figure 4.10: PDT’s qualitative evaluation results

From these scores, we can see that the evaluators generally found the features of PDT useful

in MAS development since all of the scores are above the average in the 1-5 points scale.

Functionality of PDT was mostly confirmed which means the evaluators agreed on PDT’s

support on expressing the domain-specific concepts and its suitability for the specific agent

applications. Taking into consideration the points given to the quality measures of Usability

characteristics, PDT’s graphical notations were mostly found user friendly. However, the

evaluators also thought that design with PDT is quite difficult, i.e. it requires many design

steps to complete the model.

For the reliability characteristic, the evaluators generally acknowledged PDT’s static

semantics controls, i.e. preventing the wrong relation constructions while model checking

features need to be improved. On the other hand, Expressiveness of the language was mostly

confirmed since the orthogonality of the MAS concepts defined in PDT was found sufficient

by the evaluators as well as the level of abstraction from specific agent platforms was

appreciated. However, the evaluators found that transition from design to agent programs was

quite challenging and the notations in the language needed to be revised to represent each

agent concept.

Compatibility with AOSE methodologies was generally confirmed with the evaluators’

responses, which means PDT fits in the general development process of MAS. Although the

evaluators mostly found PDT’s MAS Development features above the average, the

assessment scores given for this characteristic were lower in comparison with the previous

characteristics.

AgentDSM-Eval tool presents additional graphs and charts for the detailed analysis of the

scores when a user clicks a quality characteristic in Figure 4.10. Number of answers and their

distribution can be seen from these graphs. Also, the average score received for each quality

measure is also displayed in addition to the distribution of the answers for these specific

quality measures. Furthermore, all of these distributions are displayed for each case study.

Due to space limitations, here, we give examples of these detailed graphs only for the

analysis of MAS Development characteristics. Graphs for the remaining quality

characteristics and their quality measures, generated for PDT evaluation are available online

in (AgentDSM-Eval, 2019).

The evaluators were requested to score PDT’s MAS development features according to the

measures numbered between 20 and 24 in Table 2.1. Figure 4.11 shows the general

distribution of the scores given for all quality measures of MAS Development characteristic.

Points given by the evaluators are mostly within the range between 2 and 4. 1 and 5 points

were rarely given. In the same bar graph, AgentDSM-Eval also shows the distribution of the

scores specific for each conducted case study with the different colors. Results for any case

study can be added to or removed from the graph using the menu icon resided at the upper

right corner.

Figure 4.11: Distribution of the scores given for PDT’s assessment according to MAS

Development characteristic

The average of the scores given for each quality measure of MAS Development characteristic

is also displayed inside the AgentDSM-Tool (see Figure 4.12). The x-axis of the bar chart is

dynamically created with the numbers of the quality measures being inspected. Description of

each measure is also listed at the bottom of the bar chart in dropdown menus to guide the

users. Again, the average scores are given both for total and each specific case study. Red

line in the graph shows the grand average for the quality characteristic, here MAS

Development. When each quality measure description is clicked in the dropdown menu, the

score distribution for this quality measure is also displayed as similar to the graph in Figure

4.11.

Based on the current distribution, we can say that the evaluators found PDT is capable of

modeling agents according to the well-known agent architectures. For PDT, that support

mainly originated from its pre-built components for BDI modeling. It seems that the

graphical modeling environment of PDT was generally accredited by the evaluators based on

the average score for the quality measure no. 24. However, in comparison with the other

quality measures, PDT’s IDE was evaluated as quite complicated for MAS development from

different modeling viewpoints. In fact, this score is consistent with PDT’s assessment within

the remaining characteristics as we previously discussed at the beginning of this subsection.

For instance, the evaluators also found the use of PDT a little challenging in the sense of

complex design steps. Moreover, the transition from design to implementation was scored

relatively lower when compared to the other quality measures of the Expressiveness

characteristic. Nevertheless, PDT was evaluated as a convenient language for MAS

development since it was found above the average for the corresponding quality

characteristic.

Figure 4.12: Average scores given to PDT for each quality measure of MAS Development

characteristic

As previously discussed, AgentDSM-Eval's quality characteristics and quality measures can

also be used to compare various MAS DSMLs, guiding developers when choosing the most

appropriate language for the MDE of a MAS. To exemplify how these characteristics and

measures can be used for this purpose, the evaluators are asked to answer the same

questionnaire for three additional MAS DSMLs on which they have prior experience. These

DSMLs are SEA_ML, Sam, and DSML4BDI.

SEA_ML (Challenger et al., 2014; Challenger et al., 2018) provides modeling MAS with

various viewpoints, each representing a different aspect for developing agent systems,

especially considering their interactions with the web services defined by service ontologies.

The built-in SEA_ML code generator leads to achieving MAS source code for MAS

implementations and execution platforms, including JADE (JADE, 2000) and JACK (JACK,

2001). Sam (Faccin and Nunes, 2017) supports the design and implementation of BDI agents.

It enables both the graphical design of BDI plans and implementing these plans for

BDI4JADE agent execution platform (BDI4JADE, 2011). Finally, DSML4BDI (Kardas et

al., 2018) also provides the MDE of agents according to BDI principles. The agent structure,

composed of plans, beliefs, rules, and goals, can be modeled with DSML4BDI as well as

visually designing the logical expressions required for creating agent plans. Agent

descriptions derived from DSML4BDI models can be executed on the Jason platform (Jason,

2007). In addition to the evaluators' prior knowledge and experience, the above languages are

selected for this evaluation since they are fully-functional with their modeling and

implementation tools that are accessible online and running at the time of conducting this

evaluation.

Table 4.1 lists the evaluators' average points for all these MAS DSMLs for each specific

AgentDSM-Eval quality characteristic. As can be seen, PDT's scores are also added to this

table to compare these DSMLs. According to this evaluation, three languages, DSML4BDI,

PDT, and SEA_ML, scored above the average when we consider all MAS DSML quality

characteristics, i.e., the evaluators confirmed that using these languages can be beneficial in

the development of MAS.

SEA_ML got the highest point for the functional suitability, which means almost all

evaluators agreed on SEA_ML's support on modeling specific MAS applications and its

expressive power on the wide range coverage of agent domain concepts required to construct

various MAS. SEA_ML's features on both enabling the MAS's reliability being designed and

facilitating the MAS development with a convenient IDE are well acknowledged.

Sam got the lowest points, and hence, in the overall assessment, it felt behind the average.

The developers considered the relatively weak compatibility of the language with the MAS

domain. The same also happened with respect to comprehensibility, learnability, operability,

and the general usability of the language's graphical notations.

PDT seems to represent a fair MAS DSML with moderate features within this comparison

group. Although it was scored above the average for all AgentDSM-Eval quality

characteristics, the results showed that the evaluators prefer DSML4BDI or SEA_ML in

pairwise comparisons with PDT taking into account all quality measures.

As it is clearly shown in the results, DSML4BDI language was favored by the evaluators

within this group. Usability of DSML4BDI's modeling notations and IDE and its level of

concept coverage and suitability to the applications domain were all confirmed with the

higher points almost closer to 5. Although many features of DSML4BDI helped to receive

this score, probably it came to the fore with its built-in support of detailed logical expression

modeling required for constructing elaborate agent plans and having visual notations with

more customizable and dynamic representations based on the newest Sirius environment

(Sirius, 2015) instead of solely Graphical Editing Framework (GEF) (GEF, 2004), as is the

case in the remaining MAS DSMLs, which is quite old and difficult to use.

Table 4.1: Average scores of each MAS DSML for each AgentDSM-Eval quality

characteristic

 MAS DSML

AgentDSM-Eval

Quality Characteristic

DSML4BDI PDT Sam SEA_ML

Functional

Suitability

4.71 3.5 3.03 4.98

Usability 4.83 3.13 2.93 3.78

Reliability 4.51 3.13 3.22 4.13

Expresiveness 4.59 3.14 2.97 3.70

Compatibility 3.73 3.28 2.29 3.56

MAS Development 4.26 3.06 3.01 4.05

Overall Score 4.44 3.21 2.91 4.03

While these four languages were compared in the above according to the quality

characteristics defined in this study, the comparison results herein need to be extended with

the quantitative results of applying AgentDSM-Eval's multi-case study and measuring the

development time and throughput for all of these different MAS DSMLs similar to the

complete evaluation performed for PDT. Hence, with the combination of these quantitative

analyses and evaluation, the order and the user preference of these languages may change.

However, a complete discussion on conducting and analyzing such a very large-scale

comparative evaluation would need further investigation and individually compose another

full-length research paper by nature.

4.5 Threats to the validity

As it is the case in any evaluation study, there are also some threats to the performed

evaluation's validity. First, a relatively limited number of evaluators could participate in the

assessment. Compared to the many other computer science and software engineering

disciplines, AOSE is a young research field. Hence, the number of developers having an

interest in MAS implementation is relatively low. Also, we had to consider only graduate

students with knowledge and experience on programming agents since courses covering

AOSE topics are mostly given at the graduate level worldwide. The length and

comprehensiveness of the conducted multi-case studies also affected the number of

volunteers since they were requested to implement two different MAS using the DSML

completely. They had to repeat the development of each of these MAS without using this

DSML.

Second, a single evaluator group was used instead of two different groups, which could pose

a threat to the execution phase. We experienced using both single and double evaluator

groups in our previous empirical studies on evaluating both different MAS DSMLs (e.g.,

Kardas et al., 2017; Kardas et al., 2018; Miranda et al., 2019) and DSMLs in other industrial

domains (e.g., Saritas and Kardas, 2014; Arslan and Kardas, 2020). Using a single group may

raise the risk that the evaluators take advantage of their prior development experience using

the MAS DSML while developing the same MAS without using this MAS DSML (or vice-

versa). Using two groups may minimize this risk. However, in the case of two groups, the

qualitative evaluation based on the user feedback will not be completed fruitfully since the

groups with or without using the MAS DSML will be different. It is crucial for the

questionnaire-based comparison that a single group implements the same MAS with or

without using this MAS DSML. There is also the difficulty of creating two homogeneous

groups with almost the same level of domain knowledge, experience, and skills.

Randomizing the order of the evaluator groups and/or the applied case studies can be an

option. For instance, we followed such a randomization technique on evaluating the usability

of the syntax of a MAS DSML in (Miranda et al., 2019) where evaluator groups and MAS

development case studies are randomized. However, we could not follow the same approach

here due to: 1) the enormous size of the case studies, complete implementation of two

complex MAS from scratch instead of just modeling as is the case in (Miranda et al., 2019);

2) time limitations for the experiments; and 3) the unavailability of all evaluators for such an

extensive repeating model of evaluation. Nevertheless, the current assessment showed that

using the MAS DSML succeeded in shortening the development time and generating the

executable artifacts.

Third, the structure and the coverage of the case studies may influence the results. Variations

on the case studies would affect the evaluation of a MAS DSML’s comprehension and

support on various aspects of agent modeling. During the conducted evaluation, one case

study is selected to examine the language's capability to model agent internals, e.g., goals and

plans. In contrast, while the other case study is formalized, especially to investigate whether

modeling with this DSML considers the complicated agent interactions inside a MAS.

It is worth indicating that all the above validity threats are only specific to the MAS DSML

evaluation discussed in this paper and do not originate from the AgentDSM-Eval

framework's features. It is possible to conduct a multi-case study for evaluating a MAS

DSML with many more participants and case studies using our tool. The AgentDSM-Eval

tool's capacity within this context is only limited to the storage capacity of its underlying

technologies Cloud Firestore and Google Cloud Storage, to store all evaluation data and

materials. Moreover, using two different evaluator groups and randomizing both these groups

and the case studies' order are possible while using the AgentDSM-Eval framework if the

risks mentioned above of following such an approach can be minimized. Multiple groups can

use both the framework itself and the tool for evaluating the same MAS DSML.

5. Related Work

Originating mainly from various agent metamodel definitions (e.g. Bernon et al., 2005;

Omicini et al., 2008; Beydoun et al., 2009; Hahn et al., 2009; Challenger et al., 2011; Garcia-

Magarino, 2014; Tezel et al., 2016), AOSE researchers have made significant efforts on the

derivation of DSLs / DSMLs for facilitating the MDE of MAS (Kardas and Gomez-Sanz,

2017). Among these studies, Agent-DSL (Kulezsa et al., 2005) is used for modeling agent

features, like knowledge, interaction and autonomy. Rougemaille et al. (Rougemaille et al.,

2007) define abstract syntax of two agent modeling languages specialized for modeling the

adaptivity of agents.

Applying some of the AOSE methodologies are supported with DSML tools for visual MAS

modeling and code generation. For instance, PDT (Thangarajah et al., 2005) and Prometheus

Graphical Editor (PGE) (Gascuena et al., 2012) enable modeling of agents and their

interactions according to Prometheus methodology and lead the implementation of the

modeled agents in JACK platform. Similarly, Pavon et al. (Pavon et al., 2006) suggest using a

tool called IDK for agent software development by following the principles of INGENIAS

MAS methodology (Pavon et al., 2005). Fuentes-Fernandez et al. (Fuentes-Fernandez et al.,

2010) discuss how an agent modeling environment can be generated to support both the

lifecycle and the tasks of INGENIAS methodology again.

Hahn (Hahn, 2008) introduces a DSML4MAS language, whose abstract syntax is structured

into several aspects, each focusing on a specific viewpoint of a MAS. Graphical notations for

the concepts and relations are defined to provide a visual concrete syntax. Furthermore,

DSML4MAS supports the deployment of modeled MASs both in JACK (JACK, 2001) and

JADE (JADE, 2000) agent platforms by providing an operational semantics over model

transformations. The metamodel of DSML4MAS is employed in (Ayala et al., 2014) as a

source metamodel to support the modeling of context aware systems. Agents created from

these models are run in the ambient intelligence devices.

Ciobanu and Juravle (Ciobanu and Juravle, 2012) define and implement a language for

mobile agents. They generate a text editor with auto-completion and error signaling features

and present a way of code generation for agent systems starting from their textual description.

Likewise, SEA_L (Demirkol et al., 2013; Challenger et al., 2016a) and JADEL (Bergenti et

al., 2017) are two agent DSLs both providing textual syntaxes based on Xtext specifications

(Eysholdt and Behrens, 2010). Agents and services used by the agents can be modeled with

SEA_L and these models can be used to implement agents on JADEX agent platform

(JADEX, 2007) which is a reasoning engine for executing BDI agents. JADEL is designed to

support the effective implementation of JADE agents by natively supporting agent-oriented

abstractions. Finally, Sredejovic et al. (Sredejovic et al., 2018) introduce another agent DSL,

called ALAS, to allow software developers to create intelligent agents having reasoning

systems based on non-axiomatic logic. It is possible to convert ALAS code to Java code and

hence execute agents.

The work conducted in (Goncalves et al., 2015) aims at creating a UML-based agent

modeling language, called MAS-ML, which is able to graphically model various types of

agent internal architectures. ERE-ML (HoseinDoost et al., 2019) extends MAS-ML

according to the concepts of emergency response environments and presents a modeling

environment to MDD of agents for disaster management. However, the language only

provides static environment modeling and runtime dependent agent interactions and the

coordination and collaboration strategies can not be modeled with ERE-ML.

SEA_ML language, introduced in (Challenger et al., 2014), supports graphical modeling of

MAS and enables the construction of modeled agents over a series of model-to-code

transformations. Specifically, it supports the detailed modeling of the interactions between

agents and semantic web services to realize service discovery, agreement and execution

dynamics.

Wautelet and Kolp (Wautelet and Kolp, 2016) investigate how a model-driven framework

can be constructed to develop BDI agents by proposing strategic, tactical and operational

views. Although it is possible to convert generated dependencies to BDI agents, the

implementation of the required transformations and code generation are not included in the

study. Based on this framework, MAS implementations can be built from high level analysis

models, called the Rationale Trees (Wautelet et al., 2017).

A development method to design and implement agents via a transformation between agent

models to platform-specific code is discussed in (Faccin and Nunes, 2017). This method can

be applied by using a modeling tool, called Sam, in which graphical modeling of agents and

generating source code for BDI4JADE agent framework (BDI4JADE, 2011) are possible.

Sam delegates to the developers the task of implementing domain-specific code that cannot

be represented using this tool. DSML4BDI (Kardas et al., 2018) is another DSML proposed

for creating agents conforming to BDI architecture. In addition to modeling internal structure

of agents, their beliefs, goals, events and knowledgebase, DSML4BDI specifically allows

modeling the difficult logical expressions, which might be used in any agent plan or rule. It is

possible to generate agent descriptions from these models for implementing them on the open

source Jason platform (Jason, 2007), which is an interpreter for an extended version of a

Prolog-like logic programming language for BDI agents.

Although all abovementioned DSML studies contribute MDD of MAS by introducing

dedicated metamodels and model transformations for agent implementations, the vast

majority of these studies do not include an evaluation of both the usability of the proposed

languages and generated artefacts. Instead, they just exemplify how the new DSML and its

supporting tools can be used to develop agent systems. Only a few of them (Challenger et al.,

2016b; Faccin and Nunes, 2017; Kardas et al., 2017; Kardas et al., 2018) can be said

considering the evaluation of their proposed methods and/or agent DSMLs.

As we previously discussed in Section 2, the evaluation framework in (Challenger et al.,

2016b) brings a way of evaluating MAS DSMLs systematically within the perspective of use

cases and specifically shows how this approach can be used to evaluate SEA_ML

(Challenger et al., 2014). In fact, AgentDSM-Eval refines the methodology and the metrics of

this framework, introduces new quantitative and qualitative metrics to generalize the

approach and it specifically enriches the usability assessment of the MAS DSMLs based on

the user feedback. DSML4BDI’s (Kardas et al., 2018) code generation performance and time

savings are measured using Challenger et al.’s framework. Cost of both building model

transformations between MAS DSMLs and applying these transformations to extend the

execution platform support of these DSMLs over language interoperability (Kardas et al.,

2017) is also analyzed using the same evaluation framework. The evaluation of Sam tool in

(Faccin and Nunes, 2017) consists of investigating whether the tool both facilitates the agent

developers’ understanding of an existing BDI agent project and/or improves the evolution of

an existing BDI agent project. Moreover, Sam tool’s language elements and code generation

performance are evaluated in the same study according to Challenger et al.’s framework

(Challenger et al., 2016b) again. However, all of these studies take into account evaluating

the features of only one specific MAS DSML, which is also created by the same researchers

and hence it is difficult to generalize these evaluations to apply for other MAS DSMLs.

Finally, in our recent work (Silva et al., 2018; Miranda et al., 2019), we investigate how the

graphical syntax of MAS DSMLs can be improved by applying the principles of the

“Physics” of Notations (Moody, 2009). The hypothesis is examined under 4 research goals

covering comprehensiveness, usability, effectiveness, and efficiency. The experiments

conducted by the participants show that the participants are more likely to select the refined

graphical syntax for the agent modeling languages and the new symbols are easy to

understand. Use of the approach is demonstrated over the graphical syntax of SEA_ML

(Challenger et al., 2014) and DSML4MAS (Hahn, 2008) languages. The structure of these

evaluations is naturally not fully-fledged as AgentDSM-Eval since they just concentrate on

improving the modeling notations of MAS DSMLs.

6. Conclusion

A general framework, called AgentDSM-Eval, which enables the systematic evaluation of

MAS DSMLs according to various quantitative and qualitative metrics, has been introduced

in this paper. The framework is supported with an online tool which enables both conducting

multi-case empirical evaluation of MAS DSMLs and automatic generation and analysis of the

evaluation results. The related tool is publicly available on the AgentDSM-Eval website

(AgentDSM-Eval, 2019).

In this paper, we have also discussed how AgentDSM-Eval can be used by giving an example

of a comprehensive evaluation performed for the MAS DSML, named PDT. A group of agent

developers, playing the evaluator role, experienced using this DSML in a series of MAS

development case studies. Data achieved from these evaluators’ MAS development sessions

were automatically processed inside the AgentDSM-Eval tool. We have ensured that the tool

successfully processed these data and, after that, we could obtain qualitative evaluation

results of PDT’s performance on development time and development throughput. Moreover,

AgentDSM-Eval tool realized the automatic analysis on both this language’s metamodel and

MAS models, created by each individual evaluator, and hence it generated evaluation results

regarding MAS domain coverage and agent developers’ adoption for language constructs

respectively. Finally, evaluators’ feedback on using this DSML were obtained and processed

inside AgentDSM-Eval tool again and the tool produced qualitative assessment results based

on a set of DSML quality characters such as functional suitability, usability, expressiveness

and MAS development. All results pertaining to the evaluation of PDT are also available in

AgentDSM-Eval tools website.

Both MAS DSML users and MAS DSML developers can benefit from the evaluations

conducted with AgentDSM-Eval. On one hand, an agent developer, who intends to use a

DSML for a MAS development, can first examine the evaluation results for this DSML and

then decide whether this language fits the requirements of his/her own system development.

Furthermore, agent developers can also compare the evaluation results of different MAS

DSMLs inside the AgentDSM-Eval tool which may assist them in choosing the most

appropriate one for the system-to-be-developed. For this purpose, we have exemplified how

the qualitative evaluation process brought by the AgentDSM-Eval framework can be used in

comparing four different MAS DSMLs including PDT. On the other hand, metamodel

comparison degrees and model element usage frequencies calculated by the tool, may guide

language developers to improve their MAS DSMLs, e.g. by updating the language syntax and

other definitions towards strengthening the MAS domain coverage. Also, feedback gained

from the users on the usability and the expressiveness of the MAS DSML may also help

implementing the new versions of this language.

The reference metamodel currently used inside AgentDSM-Eval can be enriched e.g. by

including the new entities and relations for specific agent modeling viewpoints on e.g. agent

mobility, adaptivity or service interaction. For this purpose, we plan to work on extending

FAML in our future work. Another option can be integrating any other MAS metamodel into

AgentDSM-Eval in addition to the existing reference metamodel. Although FAML

sufficiently covers the general model of agent components and their relations, additional

metamodels can also be provided to the AgentDSM-Eval users. They could choose this way

for comparing the features of a MAS DSML according to specific agent modeling viewpoints

indicated above. Finally, the current semi-automatic process of MAS DSML metamodel

comparison inside the AgentDSM-Eval tool can be improved. For example, applying

metamodel clone detection (Babur et al., 2019) covers feature extraction and statistical model

analysis. Hence, it can be possible to automate the matching between the agent concepts in

the MAS metamodels being compared. The investigation of enhancing the AgentDSM-Eval

tool's capabilities within this context will be our other future work.

Author Statement

Omer Faruk Alaca: Investigation, Software, Methodology, Visualization, Writing - Original Draft

Baris Tekin Tezel: Methodology, Data Curation, Writing - Original Draft

Moharram Challenger: Conceptualization, Methodology, Validation, Writing - Original Draft

Miguel Goulão: Formal analysis, Investigation, Writing - Review & Editing

Vasco Amaral: Investigation, Project administration, Writing - Review & Editing, Resources, Funding

acquisition

Geylani Kardas: Conceptualization, Investigation, Methodology, Project administration, Supervision,

Writing - Review & Editing, Resources, Funding acquisition

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This study was funded as a bilateral project by the Scientific and Technological Research

Council of Turkey (TUBITAK) under grant 115E591 and the Portuguese Foundation for

Science and Technology (FCT) under grants FCT/MCTES TUBITAK/0008/2014 and

FCT/MCTES PEst UID/ CEC/04516/2013 and NOVA LINCS (UIDB/04516/2020).

References

(AgentDSM-Eval, 2019) AgentDSM-Eval Tool, https://agent-dsml-evaluation-

tool.firebaseapp.com/#/ (last access: October, 2020)

(Arslan and Kardas, 2020) Arslan, S., Kardas, G. 2020. “DSML4DT: A domain-specific modeling

language for device tree software”. Computers in Industry, 115, 103179: 1-13.

(Ayala et al., 2014) Ayala, I., Amor, M., Fuentes, L. 2014. “A model driven engineering process of

platform neutral agents for ambient intelligence devices”. Autonomous Agents and Multi-agent

Systems, 28: 214-255.

(Babur et al., 2019) Babur, O, Cleophas, L., van den Brand, M. 2019. “Metamodel clone detection

with SAMOS”. Journal of Computer Languages, 51: 57-74.

(Barišić et al., 2018) Barišić, A., Amaral, V., Goulao, M. 2018. “Usability driven DSL development

with USE-ME”. Computer Languages, Systems & Structures, 51: 118-157.

(BDI4JADE, 2011) BDI4JADE: A BDI Layer on Top of JADE,

http://www.inf.ufrgs.br/prosoft/bdi4jade/ (last access: October, 2020)

(Bergenti et al., 2017) Bergenti, F., Iotti, E., Monica, S., Poggi, A. 2017. “Agent-oriented model-

driven development for JADE with the JADEL programming language”. Computer Languages,

Systems & Structures, 50: 142-158.

(Bernon et al., 2005) Bernon, C., Cossentino, M., Gleizes, M. P., Turci, P., Zambonelli, F. 2005. “A

Study of some Multi-Agent Meta-Models”. Lecture Notes in Computer Science, 3382: 62-77.

(Beydoun et al., 2009) Beydoun, G., Low, G. C., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz,

J. J., Pavon, J., Gonzalez-Perez, C. 2009. “FAML: A Generic Metamodel for MAS Development”.

IEEE Transactions on Software Engineering, 35(6): 841-863.

(Bresciani et al., 2004) Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J. 2004.

“Tropos: An agent-oriented software development methodology”. Autonomous Agents and Multi-

Agent Systems 8(3): 203-236.

(Challenger et al., 2011) Challenger, M., Getir, S., Demirkol, S., Kardas, G. 2011. “A Domain

Specific Metamodel for Semantic Web Enabled Multi-Agent Systems”. Lecture Notes in Business

Information Processing, 83: 177-186.

(Challenger et al., 2014) Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G., Kosar, T.

2014. “On the use of a domain-specific modeling language in the development of multiagent

systems”. Engineering Applications of Artificial Intelligence, 28: 111-141.

(Challenger et al., 2016a) Challenger, M., Mernik, M., Kardas, G., Kosar, T. 2016. “Declarative

specifications for the development of multi-agent systems”. Computer Standards & Interfaces, 43: 91-

115.

(Challenger et al., 2016b) Challenger, M., Kardas, G., Tekinerdogan, B. 2016. “A systematic

approach to evaluating domain-specific modeling language environments for multi-agent systems”.

Software Quality Journal, 24(3): 755-795.

(Challenger et al., 2018) Challenger, M., Tezel, B.T., Alaca, O., Tekinerdogan, B., Kardas, G. 2018.

"Development of semantic web-enabled BDI multi-agent systems using SEA_ML: An electronic

bartering case study". Applied Sciences, 8(5):1-32.

(Ciobanu and Juravle, 2012) Ciobanu, G., Juravle, C. 2012. “Flexible Software Architecture and

Language for Mobile Agents”. Concurrency and Computation-Practice & Experience, 24(6): 559-571.

(Demirkol et al., 2013) Demirkol, S., Challenger, M., Getir, S., Kosar, T., Kardas, G., Mernik, M.

2013. “A DSL for the development of software agents working within a semantic web environment”.

Computer Science and Information Systems, 10(4: 1525-1556.

(Eysholdt and Behrens, 2010) Eysholdt, M., Behrens, H. 2010. “Xtext: implement your language

faster than the quick and dirty way”. In proc. Companion to the 25th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(SPLASH/OOPSLA 2010), Reno/Tahoe, Nevada, USA, pp. 307-309.

(Faccin and Nunes, 2017) Faccin, J. Nunes, I. 2017. “A Tool-Supported Development Method for

Improved BDI Plan Selection”. Engineering Applications of Artificial Intelligence, 62: 195-213.

(Fuentes-Fernandez et al., 2010) Fuentes-Fernandez, R., Garcia-Magarino, L., Maria Gomez-

Rodriguez, A., Carlos Gonzalez-Moreno, J. 2010. “A technique for defining agent-oriented

engineering processes with tool support”. Engineering Applications of Artificial Intelligence, 23(3):

432-444.

(Garcia-Magarino, 2014) Garcia-Magarino, I. 2014. “Towards the integration of the agent-oriented

modeling diversity with a powertype-based language”. Computer Standards & Interfaces, 36: 941-

952.

(Gascuena et al., 2012) Gascuena, J. M., Navarro, E., Fernandez-Caballero, A. 2012. “Model-Driven

Engineering Techniques for the Development of Multi-agent Systems”. Engineering Applications of

Artificial Intelligence, 25(1): 159-173.

(GEF, 2004) Graphical Editing Framework, https://www.eclipse.org/gef/ (last access: October, 2020).

(Goncalves et al., 2015) Goncalves, E. J. T., Cortes, M. I., Campos, G. A. L., Lopes, Y. S., Freire, E.

S. S., da Silva, V. T., de Oliveira, K. S. F., de Oliveira, M. A. 2015. “MAS-ML2.0: Supporting the

modelling of multi-agent systems with different agent architectures”. Journal of Systems and

Software, 108: 77-109.

(Goulao et al., 2016) Goulao, M., Amaral, V., Mernik, M. 2016. “Quality in model-driven

engineering: a tertiary study”. Software Quality Journal, 24(3): 601-633.

(Hahn, 2008) Hahn, C. 2008. “A Domain Specific Language for Multiagent Systems”. In proc. 7th

International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2008), Estoril,

Portugal, pp. 233-240.

(Hahn et al., 2009) Hahn, C., Madrigal-Mora, C., Fischer, K. 2009. “A Platform-Independent

Metamodel for Multiagent Systems”. Autonomous Agents and Multi-Agent Systems, 18(2): 239-266.

(HoseinDoost et al., 2019) HoseinDoost, S., Adamzadeh, T., Zamani, B., Fatemi, A. 2017. “A model-

driven framework for developing multi agent systems in emergency response environments”.

Software and Systems Modeling, 18(3): 1985-2012.

(JACK, 2001) JACK Autonomous Software, http://aosgrp.com/products/jack/ (last access: October,

2020)

(JADE, 2000) JADE: JAVA Agent DEvelopment Framework, https://jade.tilab.com/ (last access:

October, 2020)

(JADEX, 2007) Jadex BDI Agent System, https://sourceforge.net/projects/jadex/ (last access:

October, 2020)

(Jason, 2007) Jason platform, http://jason.sourceforge.net/wp/ (last access: October, 2020)

(Kahraman and Bilgen, 2015) Kahraman, G., Bilgen, S. 2015. “A framework for qualitative

assessment of domain-specific languages”. Software & Systems Modeling, 14(4): 1505-1526.

(Kardas, 2013) Kardas, G. 2013. “Model-driven development of multiagent systems: a survey and

evaluation”. The Knowledge Engineering Review, 28(4): 479-503.

(Kardas and Gomez-Sanz, 2017) Kardas, G., Gomez-Sanz, J.J. 2017. “Special issue on model-driven

engineering of multi-agent systems in theory and practice”. Computer Languages, Systems &

Structures, 50: 140-141.

(Kardas et al., 2017) Kardas, G., Bircan, E., Challenger, M. 2017. “Supporting the platform

extensibility for the model-driven development of agent systems by the interoperability between

domain-specific modeling languages of multi-agent systems”. Computer Science and Information

Systems, 14(3): 875-912.

(Kardas et al., 2018) Kardas, G., Tezel, B. T., Challenger, M. 2018. “Domain-specific modelling

language for belief-desire-intention software agents”. IET Software, 12(4): 356-364.

(Kelly and Tolvanen, 2008) Kelly, S., Tolvanen, J.-P. 2010. “Domain-Specific Modeling: Enabling

Full Code Generation”. Wiley-IEEE Computer Society, Hoboken, New Jersey, USA, 444 pages.

(Kosar et al., 2016) Kosar, T., Bohra, S., Mernik, M. 2016. “Domain-Specific Languages: A

Systematic Mapping Study”. Information and Software Technology, 71: 77-91.

(Kulesza et al., 2005) Kulesza, U., Garcia, A., Lucena, C., Alencar, P. 2005. “A generative approach

for multi-agent system development”. Lecture Notes in Computer Science, 3390: 52-69.

(Leitao and Karnouskos) Leitao, P., Karnouskos, S. 2015. “Industrial Agents: Emerging Applications

of Software Agents in Industry”. Elsevier Science Publishers, Amsterdam, Netherlands, 476 pages.

(Liang et al., 2019) Liang, C.-C., Liang, W.-Y., Tseng, T.-Z. 2019. “Evaluation of intelligent agents in

consumer-to-business e-Commerce”, Computer Standards & Interfaces, 65: 122-131.

(Mascardi et al., 2019) Mascardi, V., Weyns, D., Ricci, A., Earle, C. B., Casals, A., Challenger, M.,

Chopra, A., Ciortea, A., Dennis, L. A., Díaz, A. F., El Fallah-Seghrouchni, A., Ferrando, A.,

Fredlund, L.-A., Giunchiglia, E., Guessoum, Z., Gunay, A., Hindriks, K., Iglesias, C. A., Logan, B.,

Kampik, T., Kardas, G., Koeman, V. J., Larsen, J. B., Mayer, S., Mendez, T., Nieves, J. C., Seidita,

V., Tezel, B. T., Varga, L. Z. and Winikoff, M. 2019. “Engineering multi-agent systems: state of

affairs and the road ahead”, ACM SIGSOFT Software Engineering Notes, 44(1): 18-28.

(Mernik et al., 2005) Mernik, M., Heering, J., Sloane, A. 2005. “When and how to develop domain-

specific languages”. ACM Computing Surveys, 37(4): 316-344.

(Miranda et al., 2019) Miranda, T., Challenger, M., Tezel, B. T., Alaca, O. F., Barišić, A., Amaral,

V., Goulao, M., Kardas, G. 2019. “Improving the Usability of a MAS DSML”. In proc. 6th

International Workshop on Engineering Multi-Agent Systems (EMAS 2018), held in 17th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),

Stockholm, Sweden, Lecture Notes in Artificial Intelligence, 11375: 55-75.

(Moody, 2009) Moody, D. 2009. “The “physics” of notations: toward a scientific basis for

constructing visual notations in software engineering”. IEEE Transactions on Software Engineering,

35(6): 756-779.

(Omicini et al., 2008) Omicini, A., Ricci, A., Viroli, M. 2008. “Artifacts in the A&A meta-model for

multi-agent systems”. Autonomous Agents and Multi-Agent Systems 17(3): 432-456.

(Padgham and Winikoff, 2005) Padgham, L., Winikoff, M. 2005. “Prometheus: A practical agent-

oriented methodology”. Agent-oriented Methodologies. Henderson-Sellers, B. Giorgini, P. (Eds.).

Idea Group Publishing, pp. 107-135.

(Pavon et al., 2005) Pavon, J., Gomez-Sanz, J.J., Fuentes, R. 2005. “The INGENIAS Methodology

and Tools”. Agent-oriented Methodologies. Henderson-Sellers, B. Giorgini, P. (Eds.). Idea Group

Publishing, pp. 236-276.

(Pavon et al., 2006) Pavon, J., Gomez-Sanz, J., Fuentes, R. 2006. “Model driven development of

multi-agent systems”. Lecture Notes in Computer. Science, 4066: 284-98.

(PDT, 2011) Prometheus Design Tool, https://sites.google.com/site/rmitagents/software/ (last access:

October, 2020).

(Rao and Georgeff, 1998) Rao, A.S., Georgeff, M.P. 1998. “Decision procedures for BDI logics”.

Journal of Logic and Computation, 8(3): 293-343.

(Rougemaille et al., 2007) Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M-P. 2007. “Model

Driven Engineering for Designing Adaptive Multi-agent Systems”. Lecture Notes in Artificial

Intelligence, 4995: 318-333.

(Saritas and Kardas, 2014) Saritas, H. B., Kardas, G. 2014. “A model driven architecture for the

development of smart card software”. Computer Languages, Systems & Structures, 40(2): 53-72.

(Sebastián et al., 2020) Sebastián, G., Gallud, J. A., Tesoriero, R. 2020. “Code generation using model

driven architecture: A systematic mapping study”. Journal of Computer Languages, 56, 100935.

(Shehory and Sturm, 2014) Shehory, O., Sturm, A. 2014. “Agent-Oriented Software Engineering:

Reflections on Architectures, Methodologies, Languages, and Frameworks”. Springer, New York,

USA, 331 pages.

(Silva et al., 2018) Silva, J., Barišić, A., Amaral, V., Goulao, M., Tezel, B. T., Alaca, O. F.,

Challenger, M., Kardas, G. 2018. “Comparing the Usability of two Multi-Agents Systems DSLs:

SEA_ML++ and DSML4MAS - Study Design”. In proc. 3rd International Workshop on Human

Factors in Modeling (HuFaMo 2018), held in ACM/IEEE 21st International Conference on Model

Driven Engineering Languages and Systems (MODELS 2018), Copenhagen, Denmark, pp. 770-777.

(Sirius, 2015) Sirius Modeling Tool, https://www.eclipse.org/sirius/ (last access: October, 2020).

(Sredejovic et al., 2018) Sredejovic, D., Vidakovic, M., Ivanovic, M. 2018. “ALAS: agent-oriented

domain-specific language for the development of intelligent distributed non-axiomatic reasoning

agents”. Enterprise Information Systems, 12 (8-9): 1058-1082.

(Syriani et al., 2018) Syriani, E., Luhunu, L., Sahraoui, H. 2018. “Systematic mapping study of

template-based code generation”. Computer Languages, Systems & Structures, 52: 43-62.

(Tezel et al., 2016) Tezel, B. T., Challenger, M., Kardas, G. 2016. “A Metamodel for Jason BDI

Agents”. In proc. 5th Symposium on Languages, Applications and Technologies (SLATE 2016),

Maribor, Slovenia, OpenAccess Series in Informatics, vol. 51, pp. 8:1-8:9.

(Thangarajah et al., 2005) Thangarajah, J., Padgham, L., Winikoff, M. 2005. “Prometheus Design

Tool (system demonstration)”. In proc. 4th International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS 2005), Utrecht, Netherlands, pp. 127-128.

(Wautelet and Kolp, 2016) Wautelet, Y., Kolp, M. (2016) “Business and model-driven development

of BDI multi-agent systems”. Neurocomputing, 182: 304-321.

(Wautelet et al., 2017) Wautelet, Y., Heng, S., Kiv, S., Kolp, M. 2017. “User-story driven

development of multi-agent systems: A process fragment for agile methods”. Computer Languages,

Systems & Structures, 50: 159-176.

(Weiss, 2016) Weiss, G. 2016. “Multiagent Systems (Intelligent Robotics and Autonomous Agents

series) 2nd edition”. The MIT Press, Cambridge, Massachusetts, USA, 920 pages.

(Zambonelli et al., 2003) Zambonelli, F., Jennings, N. R., Wooldridge, M. 2003. “Developing

Multiagent Systems: The Gaia Methodology”. ACM Transactions on Software Engineering and

Methodology, 12(3): 317-370.

Omer Faruk Alaca received the B.Sc. degree in computer

engineering and the M.Sc. degree in information technologies from

Ege University, Turkey, in 2015 and 2019, respectively. Between

2017 and 2018, he worked as a researcher (with full scholarship) in

the international R&D project funded by TUBITAK, Turkey and

FCT, Portugal. He is currently working as a software engineer at

Kron Information Technology and Services Corporation. His

research interests include software quality, model-driven

engineering, multi-agent systems and domain-specific languages.

Baris Tekin Tezel received the B.Sc. and the M.Sc. degrees in

statistics from Ege University, Turkey in 2013 and 2015,

respectively. He also received the B.Sc. degree in mathematics from

Ege University, Turkey in 2017. He is currently working toward the

Ph.D. degree in information technologies with the International

Computer Institute, Ege University. Since 2014, he has been

working as a Research Assistant with the Department of Computer

Science, Dokuz Eylul University, Turkey. His research interests

include multi-agent systems, domain-specific modelling languages,

fuzzy logic and soft computing.

Moharram Challenger received his Ph.D. in IT from Ege University

in 2016. He also received his B.Sc. and M.Sc. degrees in software

engineering from IAU-Shabestar and IAU-Arak Universities in 2001

and 2005 respectively. From 2005 to 2009, he has been a tenure-

track faculty member, as a lecturer, at the computer engineering

department, IAU-Shabestar University. He was also an external post-

doc researcher at the IT group of the Wageningen University of

Research from 2016 to 2017. In 2017 and 2018, he has been a

member of the faculty as an assistant professor at Ege University. In

2019 and 2020, he worked as a post-doc researcher in the Electronics

and ICT department, University of Antwerp. He is currently a

research professor at the Department of Computer Science,

University of Antwerp. His research interests include MDE/MBSE,

MAS, and CPS and IoT Modelling.

Miguel Goulão, Ph.D., is an Assistant Professor of the Informatics

Department of FCT/UNL and an associate member of the NOVA

LINCS. With 25 years of experience with experimental software

engineering, Miguel is currently focused on how complexity affects

the usability of software development languages, namely

requirements engineering and domain-specific languages. Miguel

has published over 70 peer-reviewed papers and served as PC

member and journal reviewer in top-ranked conferences and

journals. He was a co-author of the paper receiving the best paper

award in CAiSE 2014.

Vasco Amaral, IEEE senior member, received his Phd in Computer

Science from the University of Mannheim, Germany. He is currently

an assistant professor at the Department of Informatics at Faculdade

de Ciências e Tecnologia of Universidade Nova de Lisboa and full

researcher of NOVA LINCS. He has collaborated in the past with

Particle Physics’s experiments at DESY (project Hera-B) and CERN

(project Atlas). His current research interests are on Software

Engineering, Model Driven Engineering, Domain-Specific

Languages and Cyber-physical Systems Modelling.

Geylani Kardas received the B.Sc. degree in computer engineering

and the M.Sc. and Ph.D. degrees in information technologies from

Ege University, Turkey, in 2001, 2003 and 2008, respectively. He is

currently an Associate Professor with the International Computer

Institute (ICI), Ege University, and the Head of Software

Engineering Research Laboratory (Ege-SERLab), ICI. His research

interests mainly include agent-oriented software engineering, model-

driven software development, and domain-specific (modeling)

languages. He has authored or co-authored over 90 peer-reviewed

papers in these research areas. Dr. Kardas is an Editorial Board

Member of the Journal of Computer Languages (Elsevier). He has

been working as the Principle Investigator, a Researcher or a

Consultant in various R&D projects funded by governments,

agencies and private corporations.

