Journal Pre-proof i

wwecr COMPUTE
NGURGE

On the use of the analytic hierarchy process in the evaluation of
domain-specific modeling languages for multi-agent systems

Tansu Zafer Asici, Baris Tekin Tezel, Geylani Kardas

PII: S2590-1184(20)30080-0
DOI: https://doi.org/10.1016/j.cola.2020.101020
Reference: COLA 101020

To appear in: Journal of Computer Languages

Received date: 8 September 2020
Revised date: 12 November 2020
Accepted date: 29 November 2020

Please cite this article as: T.Z. Asici, B.T. Tezel and G. Kardas, On the use of the analytic hierarchy
process in the evaluation of domain-specific modeling languages for multi-agent systems, Journal
of Computer Languages (2020), doi: https://doi.org/10.1016/j.cola.2020.101020.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cola.2020.101020
https://doi.org/10.1016/j.cola.2020.101020

On the use of the analytic hierarchy process in the
evaluation of domain-specific modeling languages for
multi-agent systems

Tansu Zafer Asici®, Baris Tekin Tezel®?, Geylani Kardas®

@ International Computer Institute, Ege University, Izmir-Turkey
b Department of Computer Science, Dokuz Eylul University, Izmir-Turkey

Abstract

Software agents and Multi-agent Systems (MAS) composed by these agents
are used in the development of the complex intelligent systems. In order
to facilitate MAS software development, various domain-specific modeling
languages (DSMLs) exist. Unfortunately, the usability evaluation of these
languages are mostly not considered or only a few assessments which cover
one single MAS DSML are made. A comparative evaluation, which is missing
in the existing studies, may help agent software developers to choose the MAS
DSML which fits well into the system development requirements. Hence, in
this paper, we introduce a comparative MAS DSML evaluation methodology
based on the Analytical Hierarchy Process (AHP). A categorized set of MAS
DSML criteria which can be used for the multi-criteria decision making is
defined. These criteria can be prioritized by the developers according to their
modeling language expectations and the application of the methodology al-
lows the evaluation of DSML alternatives based on this prioritization. As
the result of the automatic calculation of the importance distributions, the
most appropriate DSML is determined. With the voluntarily participation
of a group of agent software developers, the proposed methodology was ap-
plied for the comparative evaluation of four well-known MAS DSMLs. The
conducted evaluation showed that the agent developers prioritized appro-
priateness, completeness and shortening the development time as the most
significant criteria for the MAS DSML assessment while the attractiveness
of the notations had a minimum effect on preferring a language. Favourite
DSML for each comparison category and criteria was determined within this
evaluation.

Preprint submitted to Journal of Computer Languages November 12, 2020

Keywords: Software agents, Multi-Agent System (MAS), Domain-specific
Modeling Language (DSML), Agent-oriented Software Engineering (AOSE),
Multi-criteria decision making (MCDM), Analytic Hierarchy Process (AHP)

1. Introduction

Software agents and Multi-agent Systems (MASs) composed by these
agents are used effectively in the design and implementation of various au-
tonomous and complex intelligent systems [1, 2, 3, 4]. However, autonomous,
reactive and pro-active behaviours of agents make it more difficult to develop
agent-based software systems than other systems. As also indicated in [5],
software systems, made up of a possibly millions of agents need to be devel-
oped in near future where agents are able to behave in a reliable, intelligent,
and trustworthy way at any scale of observation. Modeling both the open na-
ture of MAS and its relation with the outer environment is still challenging.
The implementation of the interactions between agents showing autonomous
and proactive behavior require a more extensive and complicated program
development including verification, data integrity, resource management and
concurrency of these agents [6]. While programming agent plans or rules, the
mechanisms for selecting and achieving goals as well as selecting and schedul-
ing the agent intentions that are applicable in all situations of agent execu-
tion should be constructed properly. Besides, the communication of agents
within MAS organizations and the composition of agent behaviors become
even more complicated and challenging to implement while the varying needs
of different agent environments are considered [7]. Hence, it is important to
work at higher levels of abstraction prior to coding agent software during the
development of MASs [8].

In order to solve the aforementioned problems of MAS development,
the researchers working in the field of Agent-oriented Software Engineering
(AOSE) define a variety of meta-models that incorporate the basic compo-
nents and relationships of agent models [9]. By enriching these meta-models
with specific syntactic and semantic definitions, the researchers also propose
various domain-specific languages (DSLs) [10, 11] or domain-specific mod-
eling languages (DSMLs) [12] to facilitate model-driven engineering (MDE)
of agents (e.g.[8, 13, 14, 15, 16, 17, 18]). These modeling languages, which
are shortly referred as MAS DSMLs hereinafter, may leverage the abstrac-
tion, expression power and ease of use in software development, since MAS

models can be defined visually with these DSMLs first and then the software
required for the related MAS can be automatically generated via a series of
transformations defined on these models. In addition, most of these languages
provide both static and dynamic modeling of agent software through various
perspectives such as internal agent behavior, interactions with other agents
and the use of other environment sources. Hence, the modeling domain of
these DSMLs cover the whole MAS including all of the agent components
indicated above. Due to the capacity of identifying the essence of a MAS
using visual abstractions which are close to the agent domain elements, it
is expected that new DSMLs will also be introduced in the near future to
address a variety of concerns in MAS [19].

Although the descriptions of the MAS DSMLs are given in the studies
with including some examples of how they can be utilized during MAS de-
velopment, unfortunately many of these studies do not consider a through
evaluation of the proposed language, e.g. evaluating the usability of the lan-
guage and the efficiency of the generated artefacts. Remaining studies (e.g.
[8, 16, 20, 21]) cover some sort of quantitative and/or qualitative language
assessment in an idiosyncratic manner, i.e. they only aim at the evaluation
of some specific features of one single MAS DSML and hence they lack pro-
viding a general evaluation method for MAS DSMLs. More importantly they
do not support the comparative evaluation of many MAS DSMLs altogether.
Such a comparative evaluation may help agent software developers to choose
the MAS DSML which fits well into the requirements of their MAS software
development processes.

Multiple-criteria Decision Making (MCDM) techniques help decision-makers
to choose the best among many alternatives in environments with different
competitors and often conflicting criteria. Over the past few years, the con-
sistent growth has been observed in the literature on MCDM, while the
Analytical Hierarchical Process (AHP) [22] keeps the position which is the
most frequently used MCDM technique. The AHP has been proposed to
build multiple-criteria decision support method via the prioritization of each
alternative based on the pairwise comparisons of each object with all the oth-
ers. The popularity of AHP in the decision-making approach derives from
its ability to form MCDM that includes qualitative data. The method uses
a decision matrix obtained by making pairwise comparisons of the linguistic
or discrete presentation of the information. Generally, it seeks expert opin-
ions to get the information about decision alternatives. The AHP, which is
often used in solving complicated decision-making problems in other areas

3

(e.g. [23, 24, 25]) as well as in software engineering (e.g. [26, 27, 28, 29, 30])
may also contribute to the assessment of MAS DSMLs. Hence, in this paper,
we introduce an AHP-based methodology which provides the comparative
evaluation of MAS DSMLs according to many language criteria prioritized
by the agent software developers and leads the selection of the best MAS
DSML among the alternatives. Main contributions of the study can be listed
as follows:

* A well-defined and categorized set of criteria and sub-criteria is pre-
sented first time which can be used to create AHP hierarchy models for the
comparative evaluation of various MAS DSMLs.

* With conforming to the AHP steps, a tool assisted evaluation method-
ology is constructed which consists of determining MAS DSML alternatives,
prioritization of both evaluation criteria and MAS DSML alternatives accord-
ing to these criteria, automatic calculation of the importance distributions
and finally the suggestion of the best DSML among the alternatives.

* Based on the voluntarily participation of a group of agent software
developers, the proposed methodology was applied for the comparative eval-
uation of four MAS DSMLs widely used in AOSE.

The rest of the paper is organized as follows: Section 2 gives the related
work. Section 3 briefly describes the AHP for the background. Section 4
presents the AHP-based MAS DSML evaluation methodology. Section 5
discusses the experiment for comparing MAS DSML alternatives as well as
the results achieved from applying the methodology. Section 6 concludes the

paper.

2. Related Work

In the early 2000s, use of UML-based languages, such as AUML [31] and
AML [32] became popular in MAS modeling. However, relying too much
on UML which is originally designed for object-oriented system specification
as well as lacking both formal and/or operational semantics and up-to-date
tools led to the decline of agent developers’ interest in these languages over
time [33, 9]. Following these first efforts, the researchers have made and
are still making significant contribution on the derivation of various new
DSLs / DSMLs for facilitating the MDE of MAS [19], e.g. to support vi-
sual MAS modeling and code generation mostly. For instance, PDT [34]
and Promethens Graphical Editor (PGE) [35] enable modeling of agents and
their interactions according to Prometheus AOSE methodology and lead the

implementation of the modeled agents in JACK platform'. Similarly, Pavon
et al. [33] suggest using a tool called IDK for agent software development by
following the principles of INGENIAS MAS methodology. Fuentes-Fernandez
et al. [36] discuss how an agent modeling environment can be generated to
support both the lifecycle and the tasks of INGENIAS methodology again.

Hahn [13] introduces the DSML4AMAS language, whose abstract syntax
is structured into several aspects, each focusing on a specific viewpoint of
a MAS. Graphical notations for the concepts and relations are defined to
provide a visual concrete syntax. Furthermore, DSML4AMAS supports the
deployment of modeled MASs both in JACK and JADE? agent platforms by
providing an operational semantics over model transformations.

Ciobanu and Juravle [37] define and implement a language for mobile
agents. They generate a text editor with auto-completion and error signaling
features and present a way of code generation for agent systems starting from
their textual description. Likewise, SEA_L [38] and JADEL [21] are two agent
DSLs both providing textual syntaxes based on Xtext specifications [39].
Agents and services used by the agents can be modeled with SEA _L and these
models can be used to implement agents on JADEX agent platform which
is a reasoning engine for executing Belief-Desire-Intention (BDI) [40] agents.
JADEL is designed to support the effective implementation of JADE agents
by natively supporting agent-oriented abstractions. Finally, Sredejovic et al.
[17] introduce another agent DSL, called ALAS, to allow software developers
to create intelligent agents having reasoning systems based on non-axiomatic
logic. It is possible to convert ALAS code to Java code and hence execute
agents.

The work conducted in [15] aims at creating a UML-based agent modeling
language, called MAS-ML, which is able to graphically model various types
of agent internal architectures. ERE-ML [18] extends MAS-ML according
to the concepts of emergency response environments and presents a model-
ing environment to MDE of agents for disaster management. However, the
language only provides static environment modeling and runtime dependent
agent interactions and the coordination and collaboration strategies can not
be modeled with ERE-ML.

SEA_ML language, introduced in [14], supports graphical modeling of

Thttps://aosgrp.com/products/jack/
https://jade.tilab.com/

MAS and enables the construction of modeled agents over a series of model-
to-code transformations. Specifically, it supports the detailed modeling of
the interactions between agents and semantic web services to realize service
discovery, agreement and execution dynamics. Wautelet and Kolp [41] in-
vestigate how a model-driven framework can be constructed to develop BDI
agents by proposing strategic, tactical and operational views. Although it
is possible to convert generated dependencies to BDI agents, the implemen-
tation of the required transformations and code generation are not included
in the study. Based on this framework, MAS implementations can be built
from high level analysis models, called the Rationale Trees [42].

A development method to design and implement agents via a transforma-
tion between agent models to platform-specific code is discussed in [16]. This
method can be applied by using a modeling tool, called Sam, in which graph-
ical modeling of agents and generating source code for BDI4JADE agent
framework are possible. Sam delegates to the developers the task of im-
plementing domain-specific code that cannot be represented using this tool.
DSML4BDI [8] is another DSML proposed for creating agents conforming
to BDI architecture. In addition to modeling internal structure of agents,
their beliefs, goals, events and knowledgebase, DSML4BDI specifically al-
lows modeling the difficult logical expressions, which might be used in any
agent plan or rule. It is possible to generate agent descriptions from these
models for implementing them on the open source Jason platform?® which
is an interpreter for an extended version of a Prolog-like logic programming
language for BDI agents.

The vast majority of the above referenced studies do not include an eval-
uation of both the usability of the proposed MAS DSMLs and generated
artefacts. Instead, they just exemplify how the new DSML and its sup-
porting tools can be used to develop agent systems. Only a few of them
[43, 16, 20, 21, 8, 44] can be said considering the evaluation of their proposed
methods and/or agent DSMLs.

Challenger et al. [43] evaluate SEA_ML language’s [14] performance
on generating MAS artefacts and shortening the development time within
the perspective of use cases. The same approach is applied in [8] to mea-
sure the code generation performance and time savings gained by using
DSML4BDI language. Cost of both building model transformations between

Shttp://jason.sourceforge.net /wp/

MAS DSMLs and applying these transformations to extend the execution
platform support of these DSMLs over language interoperability [20] is also
analyzed with using the same approach. Bergenti et al. [21] show the effec-
tiveness of using JADEL, a DSL for JADE agents, by analyzing the lines of
code required to implement agent systems with this language. The evaluation
of Sam tool in [16] consists of investigating whether the tool both facilitates
the agent developers’ understanding of an existing BDI agent project and/or
improves the evolution of an existing BDI agent project. Moreover, Sam
tool’s language elements and code generation performance are evaluated in
the same study according to Challenger et al.’s framework [43] again. Finally,
Miranda et al. [44] investigate how the graphical syntax of SEA_ML can be
improved based on developers’ feedback. As can be seen, all of these MAS
DSML evaluation studies take into account of evaluating the features of only
one specific MAS DSML, which is also created by the same researchers and
hence it is difficult to generalize these evaluations to apply for other MAS
DSMLs.

In addition to being widely used in various domains for different pur-
poses (e.g. military personnel assignment [45], oil-fields development [46],
evaluation of clustering algorithims for financial risk analysis [24], supplier
selection in automotive industry [25], evaluation of educational use simu-
lation packages [47]), the software engineering research also benefits from
AHP and other MCDM techniques during evaluation of software tools and
methods. For instance, Zhu et al. [26] uses AHP in the evaluation of four
software architecture design alternatives according to quality attributes in-
cluding modifiability, scalability and performance. Huang et al. [27] aim
at formulating an analysis model to express the security grades of software
vulnerability and serve as a basis for evaluating danger level of information
program. For this purpose, the crossover factors of the software blind spots
are organized and an evaluation framework is built with AHP utilization.
The selection method developed in [48] to choose the appropriate techniques
for the software quality attributes, such as safety and performance, uses
AHP to evaluate the candidate rankings according to cost/benefit criteria.
Likewise, a systematic approach of modeling quality attributes in feature
models based on domain experts’ judgments using AHP is proposed in [49]
to leverage the product configuration in software product lines. Asadi et al.
[50] address the feature model configuration problem encountered in soft-
ware product lines and propose a framework based on AHP to automatically
select suitable features that satisfy both the functional and non-functional

7

preferences and constraints of stakeholders. A fuzzy variant of AHP is used
in [30] to provide a process selection framework to facilitate identifying the
proper way to build software to run on a mobile, web, or desktop environ-
ment. Recently, MCDM and AHP-based approaches are also followed in the
evaluation of cloud services software and mobile applications. Ma et al. [28]
provide a user feature-aware trustworthiness measurement approach for cloud
services in which the weights of user features are assigned appropriately by
employing AHP. Similarly, QoS metrics of cloud services and quantifications
are proposed and an evaluation scheme is developed in [51] for cloud service
trustworthiness with an MCDM method. The systematic literature review
given in [29] benefits from AHP to assign the weights to the identified mobile
application characteristics to determine how these characteristics affect the
test effort estimation of mobile applications. Finally, Akbar et al. [52] aim
at developing a prioritization-based taxonomy of success factors which are
critical for the software development activities performed within the cloud
platforms. AHP is applied for the formalization of the required prioritization
taxonomy.

Our study contributes these noteworthy efforts by providing an AHP-
based methodology to be used in the comparative evaluation of the modeling
languages for software agents. As far as we know, the proposed methodology
also presents the first MCDM technique to be applied on selecting the most
appropriate MAS DSML for the needs of the agent software developers. It
is worth indicating that AHP was previously used in [53] within the context
of AOSE. However, this work does not consider MAS DSMLs and it only
covers the utilization of AHP for evaluating MAS architectures, namely the
centralized auction, hierarchical auction-based, centralized leaky bucket and
mobile broker which can be used specifically for load balancing control in
intelligent networks.

3. The Analytic Hierarchy Process

One of the most frequently used approaches to MCDM problems in which
factors are organized in a hierarchical structure is the Analytic Hierarchy
Process (AHP) [22, 54]. The AHP derives priority scales through pairwise
comparisons of preferences [55]. In this section, we briefly introduce the
AHP on which our evaluation methodology is based. For readers who are
not familiar with AHP, Table 1 describes each fundamental AHP matrix and

vector. To solve a decision problem by AHP method, following steps need to
be taken:

Notation Name Description
A Pairwise criteria com- | This is the matrix where, once the hi-
parison matrix erarchy has been established, the crite-

ria are evaluated in pairs to determine
both the relative importance between
them and their weights relative to the
global goal.

C Criteria importance | It consists of the normalized weight of
distributions matrix each criterion in the comparison matri-
ces which is obtained to interpret each
criterion and give relative weight.
Priority Vector (Eigen- | It shows the relative weights between

vector) criteria.
K Decision matrix It expresses the percentage distribu-
tion of all criteria by alternatives.
L Overall priority vector | It gives the distribution of the decision

of the alternatives with | points.
respect to the criteria

Table 1: Descriptions of the fundamental matrices and vectors used in AHP steps.

Step 1: The decision-making problem is defined

Definition of the decision-making problem consists of two phases: deter-
mination of decision alternatives and criteria affecting to them. Decision
alternatives refer to how many different conclusions of the decision will be
evaluated. Based on this definition, let the number of decision alternatives
are shown by m and the number of criteria affecting the decision alternatives
are shown by n in the following example. Accurate determination of the
criteria affects the decision while elaborating the definition of these criteria
enables to make pair comparisons more consistent and logical.

Step 2: A pairwise criteria comparison matrix is created

Pairwise criteria comparison matrix is a n X n square matrix. The matrix
components have to be 1 on the diagonal where i = j, since this means

comparing the related criterion to itself. The matrix can be shown as follows:

a1 a12 ... Qip

921 929 . Aon
A =

Ap1 QAp2 oo Qpp

The comparison of the criteria with each other is performed one-to-one
and mutual basis by considering the degree of the importance they have
according to each other. The importance scale given in Table 2 is used for
this comparison process.

Importance Values | Value Definitions

1 Both criteria have equal importance

3 1st criterion has moderate importance in comparison with the 2nd criterion

5 1st criterion has essential or strong importance in comparison with the 2nd criterion
7 1st criterion has very strong importance in comparison with the 2nd criterion

9 1st criterion has extreme importance in comparison with the 2nd criterion

2,4,6,8 Intermediate values between the criteria

Table 2: Importance scale table

For example, if the second criterion has moderate when we compare it
with the fourth criterion, then ass element in the comparison matrix should
be 3. Otherwise, agy element should be 1/3 and a4e should be 3.

It is enough that comparisons can be made for the values of pairwise
criteria comparison matrix which are above the diagonal. Inherently, the
formula (1) is used for the components under the diagonal.

aj; = — (1)

Step 3: Importance distributions of criteria are determined as
percentages

Column vectors are used to determine the weighting of the criteria, i.e.
to determine the importance distributions. This vector is shown as:

10

The formula (2) is used when calculating B-column vectors:
i (2)
> im1 i

For example, following matrix A shows the comparison of a set of criteria
with each other and let the vector B; be calculated.

bij =

1 1/3 5
A=| 3 1 4
1/5 1/4 1

In this case, b1 element of the vector B; will be calculated as:

1
C1+3+402
Similarly, when the other elements of 3, vector are calculated, a column

vector will be obtained as follows. The sum of the elements of this vector
should be 1.

bll

0.238
B, = | 0.714
0.048

When n B-column vectors are obtained, they are combined in a matrix
structure, each corresponding to a column, i.e. a C' matrix is created:

C11 C12 ... Cin

Co1 Co2 ... Cop
C =4

Cn1 Cn2 co.o Cpn

Consider the given example above, C matrix will be as follows:

0.238 0.210 0.500
C=1| 0714 0.632 0.400
0.048 0.158 0.100

11

By using the C' matrix, distributions showing the importance values of
criteria relative to each can be obtained. In order to obtain these distribu-
tions, as shown in formula (3), arithmetic average of the row components of
the C' matrix is calculated and the W-column vector called Priority Vector
(Pr) is computed.

> =1 Cij
wi = = (3)
The W-vector is expressed as follows:

It is worth indicating that both the sum of the elements in the columns
of the C' matrix and the sum of the elements of the W vector must be
1. Considering the above example, elements of the priority vector will be
calculated as follows. When the three criteria are evaluated together, the first
criterion gets approximately 32%, the second criterion gets approximately
58% and the third criterion gets approximately 10% importance values.

0,238+0,210+0,500
0,714-40,83240,400 0,92
W = 9:712+0,592+0,400 =~ | 0,58
0,048+0,1580+0,100 0.10

3 b

Step 4: Consistency in criteria comparisons is measured

The consistency of the results depends on the consistency between crite-
ria which is provided by a decision-maker as one-to-one matching. There is
a mechanism in AHP that measures the consistency of these comparisons.
This mechanism is called Consistency Ratio (CR) and it can be used to
test the consistency of the priority vector, namely comparison between the
criteria. CR calculation in AHP is based on the comparison between the
number of criteria and a coefficient called Principal Eigenvalue (\). For cal-
culation of the A, first, the D-column vector [dy,...,d,] is obtained by matrix
multiplication of the comparison matrix A and the W-priority vector.

12

ayp a2 ... QGip w1

921 922 e QAop Wa
D=

Ap1 Ap2 oo Qpp Wy,

By using the formula 4, E; values related to each evaluation criterion are
obtained from the division of the mutual elements of the D-column vector
and the W-column vector.

d
E=—" (i=12,..., 4
ol) (@)
Arithmetic mean calculated from the formula 4 gives the Principal Eigen-
value (A) for the comparison.

Wi
)\ = 2111 (5)
n
After finding the A, the Consistency Index (CT) can be calculated using
the formula 6. \
—n

n—1

Cl=

(6)

Finally, C'I is divided by the standard correction value called Random
Index (RI) in the formula 7 to obtain the Consistency Ratio (C'R). From
Table 3, N value, which corresponds to the number of criteria, is selected.
For example, RI value would be 0.58 in 3-criteria comparison.

CI
COR = 7 (7)
N|RI [N |RI
110 |6 |124
2 10 |7 |132
3 10588 |14l
410009 | 1,45
5 [1,12]10 | 1,49

Table 3: RI values

13

If the calculated C'R value is less than 0.10, it indicates that the compar-
isons are consistent. Otherwise, there are some errors in the transactions, or
the decision maker acted inconsistent in the comparisons.

Step 5: Importance distributions of the criteria in m decision
alternatives are found as percentages

At this step, one-to-one comparisons and matrix operations are repeated
n times or the number of criteria. But this time, the size of G comparison
matrices will be m x m. Because, the comparison matrices are obtained
by comparing the alternatives with each other based on the related criteria,
not by comparing the criteria with each other. After each comparison, m x
1 sized S column vectors, which show the percentage distribution of the
corresponding criterion by alternatives, are obtained. These column vectors
are as follows:

S
S; = Sfj
S,

Step 6: Result distribution in decision points is found
At this step, firstly, the m x n sized K decision matrix, composed of the
n number m x 1 sized S-column vector is created:

Sll Slg e Sln

“ 521 522 e Sgn
K= .) . .

S’ml Sm2 B Smn

As a result, when the decision matrix is multiplied by the W column
vector (the priority vector), the m sized L column vector is obtained (see
below). The L column vector gives the distribution of the decision points
as percentages. The sum of the elements of the vector is equal to 1. This
distribution also shows the importance of the decision points.

14

S11 S12 ... Sin w1 I
S21 S22 ... Sop Wa o1

Sml Sm2 -oo Smn W, lml

4. The AHP-based Evaluation Methodology for MAS DSMLs

This section introduces the methodology which we propose for the com-
parative evaluation of MAS DSMLs. As conforming to the AHP steps de-
scribed in the previous section, the application of this evaluation method-
ology consists of defining MAS DSML evaluation criteria and determining
MAS DSML alternatives, collecting and preparing data for the evaluation,
calculating weights, and finally analyzing the achieved results. Figure 1 illus-
trates the overview of this methodology. Definition of the evaluation criteria
and the general process of how these criteria can be used to formalize and
evaluating the related hierarchy are discussed in the following subsections.
Execution of the remaining steps of the methodology for conducting the ex-
periment covering data collection and preparation and finally analyzing the
achieved results are all elaborated in the next section of the paper.

4.1. Defining Criteria and Sub-criteria

According to the AHP Step 1 (see Section 3), the problem, criteria and al-
ternatives should be determined first. The problem presented here is how to
facilitate the quality evaluation of MAS DSMLs and guide software develop-
ers to determine the most suitable DSML(s) for their MAS implementations.
After the problem is determined, MAS DSML evaluation criteria need to be
defined. During derivation of these criteria that will be used in AHP-based
MAS DSML evaluations, we benefited from our previous work [43], [20], [56],
[8] on the quantitative analysis and qualitative assessment of MAS DSMLs,
called SEA_ML and DSML4BDI. Although just one specific MAS DSML
was evaluated in each of these studies without considering any comparison,
these prior experiences enabled us to define new criteria especially on the
usability and the productivity features of MAS DSMLs in this study. Fi-
nally, we also adopted the characteristics of the Framework for Qualitative
Assessment of DSLs (FQAD) [57]. However, both these characteristics and
their definitions which are originally given to evaluate DSLs in general terms,

15

s ~

Identify alternative MAS DSMLs to be
evaluated

- M
Identify decision-maker(s) to

participate in the AHP-Based MAS
DSML evaluation.

. J

4 I
Create pairwise comparison matrices
to determine the weight of criteria and
the weight of alternatives for each
corresponding criterion

\. J

l

Check the consisiency
of all pairwise comparison
malrices.

Determine the weight of the MAS
DSML evaluation criteria and the
priority values of the MAS DSMLs

being evaluated.

[Select MAS DSML to use.]

Figure 1: Steps of the AHP-based evaluation methodology for MAS DSMLs

are re-engineered and specialized in our work for the needs of assessing MAS
DSMLs. In addition, we defined new categories e.g. on the compatibility of
MAS DSMLs and new criteria for constructing agents which are not included
in FQAD definitions.

Table 4 lists the categories and the criteria which we defined to create
the AHP hierarchy model to be used in MAS DSML evaluations. Since each
criterion and sub-criterion are just related with one category, which refers
to the first level criterion from the AHP point of view, it also enables to

16

Category

Criterion

Sub-criterion

Functional Suitability

Completeness

Appropriateness

Usability

Comprehensibility

Learnability

Number of Activities

User Perception

Operability

Attractiveness

Compactness

Ease of Use

Ease of Use of
the DSML

Ease of Use of
the Tools

Reliability

Model Checking

Correctness

Expressiveness

Uniqueness

Orthogonality

Correspondence to
Important Domain
Concepts

Conflicting Elements

Right Abstraction
Level

t

Compatibility

Compatibility — with

the Domain

Compatibility — with
the Development
Process

Maintainability

Productivity

The
Time

Development

The Amount of Hu-
man Resource

Extensibility

Ne}

Reusability

Integrability

17

Table 4: Criteria and sub-criteria for AHP hierarchy model to be used in MAS DSML

make category based evaluation for MAS DSMLs. There are 10 categories
having various criteria. These categories are Functional Suitability, Usabil-
ity, Reliability, Fxpressiveness, Compatibility, Maintainability, Productivity,
Extensibility, Reusability and Integrability.

The first category, Functional Suitability represents a MAS DSML’s abil-
ity to meet the requirements for agent software. This category has two crite-
ria: Completeness and Appropriateness. Completeness means that all con-

cepts and scenarios of an agent domain can be expressed with a MAS DSML.
Appropriateness indicates whether a MAS DSML can be used for the design
and the implementation of different agent models and architectures such as
behavioral models or BDI [40] agent architectures.

The second category, Usability, aims at evaluating whether a MAS DSML
can be used to achieve the goals specified for the construction of agent sys-
tems. Usability category contains 9 criteria which are Comprehensibility,
Learnability, Number of Activities, User Perception, Operability, Attractive-
ness, Compactness and Ease of Use. Comprehensibility means that the agent
modeling elements of a MAS DSML are easily understandable by the devel-
opers. Moreover, the concepts and symbols provided by a MAS DSML should
be both learnable and recallable for the language’s users, i.e. concepts given
for the design of agent plans and inner tasks need to be catchy and good
to follow for further MAS implementations. This feature is evaluated in the
Learnability criterion. On the other hand, the Number of Activities crite-
rion evaluates whether MAS DSMLs minimize the steps and the number of
development tasks required during MAS design and implementation.

With User Perception criterion of the Usability category, our intent is to
determine the recognition of agent developers on the appropriateness of the
DSMLs for their needs. Based on their knowledge and experience on MAS
development, agent developers (MAS DSML users), can define and choose
the MAS DSMLs which are most suitable for agent development. Operability
criterion considers whether a MAS DSML’s elements can be operated easily
and provide managing the language features with little effort. In addition,
this criterion also aims at identifying the functionality of both MAS DSMLs
and their CASE tools since many DSMLs in AOSE field only emerge from
the academic studies and the continuous support on improving especially
the language constructs and the related software tools is often unavailable
contrary to the commercial products. Hence, agent developers may encounter
difficulties in the operation of these languages and their tools. Furthermore,
agent developers may easily understand what the symbols or notations mean
and they may not have any conceptual confusion when the language elements
of a MAS DSML are pleasing to the eye. Notations, symbols and other
graphical elements presented by MAS DSMLs are evaluated according to the
Attractiveness criterion in our study. A recent example of how improving
the attractiveness of language elements may contribute to the usability of a
MAS DSML can be found in [44]. MAS DSMLs have several background
mechanisms, e.g. model transformations and code generations which provide

18

both the power and the representation of the language. Compactness of
them also leverages the usability of these languages. Finally, with its two
sub-criteria, Fasy of Use criterion evaluates the convenience of using both
the language itself and modeling and implementation tools come along with
the language.

As is the case in other programming and modeling languages, MAS
DSMLs are expected to provide the correct construction of agent models
and bring features that will minimize developer errors. Reliability category
in the proposed AHP hierarchy model includes two criteria to evaluate MAS
DSMLs for this purpose. Model Checking criteria is used to evaluate whether
a MAS DSML is able to reduce errors which may be encountered during MAS
modeling. Correctness means a MAS DSML has sufficient controls prevent-
ing agent developers from connecting incorrect language components e.g.
during the construction of agent internals or messaging between agents. The
language is expected to prevent such kind of improper MAS modeling auto-
matically or at least, it is required to process user models, detect modeling
errors and notify the users.

Expressiveness can be defined as the degree to which a problem solving
strategy can be mapped into programs easily [57]. A MAS DSML should pro-
vide a convenient way of modeling agents and their artifacts which conforms
to the design specified by the agent developers. Related capabilities of MAS
DSMLs are evaluated in our AHP hierarchy model with the Expressiveness
category which consists of 5 different criteria: Uniqueness, Orthogonality,
Correspondence to Important Domain Concepts, Conflicting Elements, and
Right Abstraction Level. Uniqueness denotes a MAS DSML has only one
way to express the concepts of agent domain. In addition, the Orthogonal-
ity is supported when each MAS DSML construct is used to represent one
distinct concept in the domain. For instance, it would be better for a lan-
guage to provide only a single form of modeling to implement each plan of an
agent as a composition of inner tasks. Correspondence to Important Domain
Concepts criteria can be used to assess whether the abstract syntax of each
MAS DSML provides all significant concepts of agent domain for the system
design. Similarly, the syntax needs to be as free from Conflicting Elements
as possible to eliminate confusion during MAS modeling. That may also
guide to remove unnecessary elements. The metamodel of a MAS DSML
should also be at the Right Abstraction Level. The meta-entities of the lan-
guage’s metamodel and their relations should not be too complicated, i.e.
they should not include unnecessary details of physical agent platforms. On

19

the other hand, these elements also should not be too abstract from the exact
MAS implementations since the models created by the language can now be
trivial and they will need more intervention than necessary. For instance, a
very abstract model of agent plans causes the generation of light code tem-
plates for agent tasks and hence these structures need to be completed very
deeply before executing the related plans. An extensive discussion of how
critical to achieve right abstraction level in the metamodels of MAS DSMLs
can be found in [20].

To increase the adoption of agent developers, a MAS DSML needs to
be compatible both with the MAS domain and the software development
methodologies applied to implement agent systems. These features of MAS
DSMLs are evaluated within the Compatibility category which includes two
criteria. As its name suggests, the Compatibility with the Domain measures
the MAS domain coverage of a DSML and evaluates the language’s capa-
bility to operate with remaining domain elements. Compatibility with the
Development Process means models and any other artifacts of a MAS DSML
can be used inside existing AOSE methodologies [58] and/or modeling with
the DSML can be integrated into the MAS development process, e.g. it can
be used as part (or perhaps one of the steps) of the development process.

The ability to modify the existing functions in a MAS DSML is evalu-
ated in the Maintainability category. Some features can be added, deleted
or changed by developers or support communities without decreasing the
usability of the MAS DSML.

The seventh category is Productivity. It evaluates whether a MAS DSML
uses as little resources as possible to achieve the goals. Resource utilization
is evaluated with two criteria. The first one is the Development Time. A
MAS DSML is expected to shorten the development time required to design
and implement MAS. Users naturally do not prefer a MAS DSML extend-
ing system development time. The second criteria is the Amount of Human
Resource. Similar to the development time, use of a MAS DSML may de-
crease the amount of human resources required to construct agent systems
in comparison with the conventional approaches followed to implement same
systems.

Inside the Fatensibility category, adding new features into an existing
MAS DSML is evaluated. If the DSML supports extensibility, it will be
possible to add new modeling elements, new model transformations and code
generation mechanisms in a convenient way to support the implementation
of the MAS modeled with this DSML into various agent execution platforms,

20

e.g. JACK, JADE or Jason. Similar to Maintability, being extensible also
facilitates keeping a MAS DSML up-to-date and hence adoption by the users
for a long time.

Another desirable feature is that the syntax and semantics definitions of a
MAS DSML can be used to create other languages or agent development plat-
forms. That feature is evaluated inside the Reusability category. In addition,
it is possible to integrate existing MAS DSMLs with other DSMLs and/or
agent programming languages for more enhanced agent development envi-
ronments. The last category, Integrability, is aimed to assess a MAS DSML
within this context. For instance, a MAS DSML can be integrated with
the application programming interfaces (APIs) of various agent languages
or frameworks to formalize a complete toolset for the MDE of autonomous
agents. Also, it can be possible to integrate many MAS DSMLs together to
facilitate implementing a modeled MAS in various agent execution platforms
without creating new transformations for code generation required for each
specific agent execution platform as discussed in [20].

These criteria, brought for the evaluation of MAS DSMLs, can also be
closely related to the most of the cognitive dimensions defined in the well-
known Cognitive Dimensions Framework (CDF) [59, 60]. CDF enables the
usability assessment of visual programming languages as well as DSLs (e.g.
[61]) by taking into consideration a set of cognitive dimensions including
e.g. Abstraction gradient, Closeness of mapping, Consistency, Diffuseness,
Error-proneness, Hard mental operations, Role-expressiveness and Viscosity.
For instance, having a Right Abstraction Level for a MAS DSML may also
lead the language abstraction gradient as defined in CDF; so modeling both
agents, their interactions and environments in different levels from overall
MAS perspective to the programming constructs of the underlying MAS plat-
form is possible. Moreover, Completeness and Appropriateness criteria in our
AHP model aim at evaluating whether a MAS DSML minimizes the seman-
tic gap between MAS modeling and actual system implementation which is
similar to the context of CDF’s Closeness of mapping dimension. Likewise,
User Perception criterion may refer to the CDF’s Consistency dimension
since it helps evaluating the agent developers’ expectations on the features
of the DSML in question. Uniqueness and Orthogonality criteria consider the
number of the syntactic elements required for expressing relations in a MAS
model as is the case in CDF’s Diffuseness dimension. Crriteria for Corre-
spondence to Important Domain, Conflicting Elements, Model Checking and
Correctness criteria in our AHP model support the evaluation of whether a

21

MAS DSML’s notation catches mistakes and eliminates errors, i.e. the lan-
guage is evaluated within CDF’s Error-proneness dimension. Compactness
of the model transformations and code generation features of a MAS DSML
minimizes hard mental operations while assessing the Operability and Com-
prehensibility of the MAS modeling elements also provides examining the
relations of these elements with each other, i.e. they are inspected within
the Role-expressiveness dimension of CDF. We evaluate the ability of modi-
fying the features of a MAS DSML without losing the usability by means of
the Maintainability criteria which is very similar to the assessments made un-
der CDF’s Viscosity dimension. Finally, evaluating the Attractiveness and
Easy of Use of a MAS DSML’s graphical syntax also supports measuring
both the appearance of the model and the traces between modeling elements
for agents, goals, plans, etc. as considered in Visibility dimension of CDF.

4.2. Formalizing and FEvaluating the Hierarchy

After creating the evaluation criteria, a set of MAS DSMLs is required
to be selected as the alternatives to be used in our AHP-based methodology.
These criteria and MAS DSML alternatives construct the required hierar-
chy. The priority of the criteria should be determined as first. For this
purpose, participants (decision-makers) must perform a series of pair-wise
comparisons deriving numerical measurement scales for each node in the hi-
erarchical structure. Criteria are compared in pairs according to their level
of priority. So, decision-makers determine the weight to be given to each cri-
terion when choosing the most appropriate MAS DSML from their point of
view. Alternatives are compared in pairs according to each of the preference
criteria, too. By this way, the weight to be given to each alternative is de-
termined according to each of the criteria. Thus, while generating the global
priority for the alternatives, the priorities of the alternatives are formed on
the basis of each criterion. Next section discusses how these steps are applied
to evaluate four MAS DSMLs within a conducted experiment.

5. Experiment and Discussion

The methodology was used for the comparative evaluation of four different
MAS DSMLs. In the following subsections, determining these MAS DSML
alternatives, collecting and preparing data, calculating the weights and finally
analyzing the results are discussed.

22

5.1. Determining MAS DSML Alternatives

Four different MAS DSMLs were determined here, namely JACK, PDT,
SAM, and SEA_ML. In addition to being widely used in the AOSE domain,
these DSMLs were selected for this evaluation by taking into account various
features and advantages they brought for the development of agent internals,
agent interactions and other artifacts required in a MAS. All of them provide
a convenient IDE for MAS modeling, a well-defined set of graphical syntax
and an executable semantics for the implementation of the modeled systems.
Another reason of choosing these DSMLs is all of them are fully-functional
with their modeling and implementation tools which are accessible online
and running at the time of conducting this evaluation.

Although JACK [62] is, in fact, a commercial MAS programming frame-
work with an API especially dedicated to implement BDI agents, it also
provides a convenient IDE to MDE of MAS. It presents graphical agent mod-
eling and then auto-generation of JACK codes. These features caused us to
consider JACK as one of the DSMLs in this study. PDT [63] is the software
tool, developed for supporting the well-known Prometheus AOSE methodol-
ogy. It also provides a DSML whose graphical concrete syntax enables users
to visually model e.g. agents, goals, plans and communications based on
the descriptions of the Prometheus diagram types. In addition to support
fundamental process of Prometheus, PDT also includes a code generator to
implement the modeled agents and plans for an agent execution platform.
SAM [16] is one of the newest DSMLs which also supports BDI agent design
and implementation. It enables both the graphical design of BDI plans and
implementation of these plans for BDI4JADE agent execution platform. Fi-
nally, SEA_ML language [14] provides the graphical modeling of MAS and
enables the construction of modeled agents over a series of model-to-code
transformations. Specifically, it supports the detailed modeling of the inter-
actions between agents and semantic web services to realize service discovery,
agreement and execution dynamics. The overview of the created AHP model
with including both these MAS DSML alternatives and evaluation categories
and criteria previously introduced in Section 4.1 is shown in Figure 2.

5.2. Data Collection and Preparation

Seven agent developers were voluntarily participated in this study. All
participants had sufficient knowledge and experience on the computer related
fields and passed graduate courses called Advanced Software Engineering,
Agent-oriented Software Development and Multi-agent Systems, taught in

23

Journal Pre-proof

W v3s

SBARBUWIANY P 19A]

s Jo ase3

ssaupedwod

Angesedo

B01n0saYy

A ssoujoouon - M LI
Jo Junowy ayL Y e

uewny
swiy

wawdojpreq
auL

A [Tl Aiqisuayaidiion):

Augeurgurey

BLIA}ID GNS 1€ [9A3]

ssausjendoiddy <

ssauslaidwo) <« BLIBJMD (2 [9A97

sauobajen i) [aAa7

STNSA SYW
o uopenjeng

2An93[qO 11BI9A0 :0 19437

Figure 2: AHP hierarchy model for the MAS DSML evaluation

24

Computer Engineering Department and International Computer Institute
(ICI) of Ege University. One participant had Ph.D. degree while two of
them were Ph.D. candidates and the remaining were M.Sc. students. On the
average, the participants had at least 2 years MAS design and implementation
experience covering the application of AOSE methodologies and using some
agent development APIs like JADE and JACK. They also had almost the
same level of experience on using all MAS DSMLs being evaluated in this
study since all these DSMLs were previously used by all participants while
taking the above courses related to MAS. They used all these DSMLs in the
same software development projects aiming to design and implement MAS
for various domains including hotel reservation, garbage collection, online
scientific conference management and stock trading. The participants were
familiar with software engineering methodologies, having at least 4 years’
experience on using IDEs such as Eclipse, NetBeans, IntelliJ and Visual
Studio. Four participants were also working in the industry at the time of this
evaluation was performed and they possessed the experience of developing
software in industrial scale (2.5 years on average).

Additionally, during our experimental study, we benefited from the fea-
tures of AHP-OS online tool, available in [64], which is widely used in AHP
studies in order to create the decision hierarchy, determine inconsistent de-
cisions, make sensitivity analysis and evaluate the alternatives [65]. With
this tool, we managed to obtain the participant choices with group decision
support features. All evaluators easily participated in our online AHP group
sessions via this tool. The AHP for the evaluation of the above MAS DSMLs
was created inside AHP-OS. Evaluation of the priorities and MAS DSML al-
ternatives as well as calculating the priorities based on pairwise comparisons
were all performed during our experiment again with using AHP-OS. The
screenshots given in Figure 3 show how the online forms and tables of this
tool are used during our AHP-based MAS DSML evaluation experiment.

During the study, two kinds of questionnaires were created and presented
to the participants. In the first questionnaire, the participants prioritized
the criteria introduced above in Sect. 4.1. Each criterion was compared with
each other respectively and the participants gave scores between 1 — 9 to
decide which criterion had priority over them. Scoring with 1 means that
the criterion has no priority and 9 indicates that it has the highest priority
for the participant. As a result, it was aimed to obtain the general priority
score of each criterion. After the participants completed this questionnaire,
they were given the second questionnaire. This questionnaire provided the

25

I
® Maintainability or O Extensibility 1 2030405 06 07 @8 09

! Category Priority Rank
2 ® Maintainability or © Functional Suitability 1 20304@®s5 06 07 08 O9

3 ® Maintainability or © Usability 1 2030405 @5 07 08 @9 1 Maintainability‘ 5.3% 10
4 Maintainability or @ Reliability 1 2030405 06 ®7

5 ©® Maintainability or © Expressiveness 1 203@4 05 06 07 08 @9 2 Extensibility| 6.1% 7
6 Maintainability or ® Compatibility 1 2030405 @6 07 08 @9 ‘

7 ® Maintainability or © Productivity 1 020304 o |3 Reusability| 5.5% 8
8 Maintainability or @ Reusability 1 20304)9

9 @ Maintainability or O Integrability | 920304050607 005 |4 Integrability| 5.4% 9

. i i ili 9
(a) Online form for comparing the evaluation criteria > R =7 | 17-1%

to obtain the pair-wise comparison matrix. 6 Usability| 16.3%
1 ® SEA_ML or UJACK 1 203 04 ®5 06 070809 |
7 Reliability| 8.1% 6
2 SEAML or ®5AM ©1 0203 ©®4 0506 07 02 00
3 @ SEA ML or OPDT ©O1 22 O3 04 O5 O6 @7 8 Expressiveness| 15.8% E|
4 ® JACK or OSAM ©1 ©2 03 04 05 ®6 07 08 O9g 9 Compatibility| 8.7% 5
5 @ JACK or OPDT 1 203 ©®4 05 06 07 @2 @0 »
10 Productivity| 11.7% @ 4
6 SAM or ®@PDT 1 203 04 ®5 O O7 @8 @9

(c) The criteria priority table au-
(b) Online form for comparing the MAS DSML alter- tomatically generated according
natives with each other to obtain the pair-wise com- to the obtained pair-wise compar-
parison matrix. ison matrix.

Figure 3: Some screenshots taken from the AHP-OS tool

comparative evaluation of MAS DSMLs according to the defined criteria,
i.e. each participant evaluated MAS DSMLs with each other according to
each criterion separately. Here again, the participants gave scores between
1 — 9. Hence, this questionnaire led to see which MAS DSML comes into
prominence more when considering each criterion. When these questionnaire
were completed, we applied Step 2 of AHP and hence criteria comparison
matrix was formed. Thus, the weights of the criteria were determined as
described in Step 3 of AHP. After the weight distribution was created, the
consistency of the answers were also checked according to Step 4 of AHP. As
indicated in Sect. 3 of this paper, when the Consistency Ratio is greater than
10%, it shows that given answers are inconsistent with the process. In our
study, when this situation occurred, the participants were asked to review the
relevant part of the survey again. A participant was not allowed to proceed
to the next stage until the Consistency Ratio of the relevant part decreased
below 10%.

26

5.8. Calculation of the Weights

After the questionnaire process was completed, we applied Step 5 and
Step 6 of AHP one after another to obtain both the importance percent-
ages of the MAS DSML evaluation criteria and the priority values of the
MAS DSMLs being evaluated. In other words, the distribution of the scores
given to the criteria was determined according to the MAS DSML alter-
natives. Here, the MAS DSMLs were evaluated in general manner as well
as according to each evaluation criterion. Therefore, apart from the overall
assessment, one MAS DSML can be evaluated according to some criteria or
sub-criteria which come more relevant to the related agent developer (in here
the participant).

5.4. Analysis and Discussion

At first, the evaluation scores for the MAS DSML evaluation criteria,
listed in Table 5, were gained when the participants compared these criteria
with each other based on their own priorities and expectations from any
MAS DSML. After each participant scored each MAS DSML according to
the evaluation criteria, the results for MAS DSML evaluations were obtained
(see Table 6) at last.

In Table 5, levels 1, 2 and 3 contain the categories, the criteria, and the
sub-criteria for MAS DSMIL evaluation respectively. The numbers next to
each item indicate the priority scores calculated based on the participants’
choices. These participant choices were obtained by the first questionnaire
made during executing the second step of our methodology (see Sect. 4.2).
The priorities are between 0 — 1 where O represents that a criterion has no
priority for the participants, and 1 represents that the criterion has the high-
est priority for these participants. Global Priorities (Glb. Prio.) column
in Table 5 shows the ratio-scale weights (in percentages) of any criterion or
sub-criterion with respect to their importance on evaluating MAS DSMLs,
i.e. the order of the significances of each MAS DSML evaluation criterion
according to the participants’ prioritizations. These percentages were calcu-
lated by creating the importance distributions of the criteria as discussed in
Sect. 3, AHP Step 3. After calculating the weights for each binary compar-
ison matrix, the weight of each sub-criterion at the bottom of the hierarchy
in the calculation of global priorities is achieved by multiplying the local
weights starting from each sub-criterion upwards. Thus, with the help of
these calculated weights, global priorities are found.

27

0,0 90IN0SaY

HETY TWeWN] JO JUNOWY 9T,
%7 L 0€9°0 owrL], yuowrdo[eAd(oY T, L1T°0 4y1a1300p0id
o/lar 02Z 0 sso001 yuotadopao(]
& UL s Aypqreduon
%80 08470 urewo(g 18070 Aypiqryeduroy
oL, s Aprqryeduwosy
WNY'¢C CCT 0 [PA9] TO1DRIISqY 1USTY
VASS 21%°() Syuswe]y SUIorguo))
o) - 28170 s9deouo) urewro(y
%6C yueyrodw] 04 vouopuodsorIo)) QGT0 () SSOULAISSOIAXT
P A4 T19%°0 Ajreuo3oyli0)
%6°C ©Q1°0 ssouanbru)
WIS $€9°() SSOUIDOLIO)) .]
%0°¢ 9970 SUBPAT) PPOIN T80°0 ANTIqeIey
. TGP0 S[OOL 23 Jo
%0'1 @WD Jjo mﬂ%@
46T 675°0 TINSd 2U3 JO | OFT°0 ©8() JO °osey
os() jo oser
%S T $720°0 sseujydeduro))
%80 010" () SSOUOAIORINTY
%l'€ 061°0 Apiqerodp €91°0 Ayiiqes)
%0°T 290°0 uonydediaJ I9s)
pAYR! €1,0°0 SOI}IAIOY JO IoqUINN
%S'T 1GT°0 Aj[iqenreory
%eV €97°0 Liqrsuotprduro))
0, N . Q@
%L OLS 0 SO |1 s pronona
%G 7S0° 0 A)IIqeasojuy
%SG GGO'0 AN[Iqesnoy
%19 190°0 AN[IGISUIXy]
%E'S £60°0 AjIqeurejurey

eI TINSA
SVIN JO uoryenyeas

oud qIo

€ [0oA9T] G ToAeT

T [oA0T

0 [PA9TT

Table 5: Evaluation scores of MAS DSML criteria

28

According to global priority percentages shown in Table 5, the Appropri-
ateness was selected by the participants as the most significant sub-criterion
for MAS DSML evaluation with 8.7%. It can be deduced that the partic-
ipants want to develop different agent models and architectures with using
the same MAS DSML. We can interpret that the agent developers do not
want to lose time and decrease the MAS development efficiency by dealing
with different MAS DSMLs, e.g. in case they are forced to use one MAS
DSML only eligible for reactive agent planning and use another DSML for
BDI modeling. The second highest priority percentage was given to Com-
pleteness with 8.4%. That means the participants expect a MAS DSML to
cover the whole MAS domain with all required agent concepts and their re-
lations and hence it enables to realize any kind of MAS execution scenarios.
Moreover, these two sub-criteria with the highest-percentages belong to the
same criterion, Functional Suitability and so, it stands out as the highest
priority criterion among all MAS DSML evaluation criteria. That result can
be estimated since the functional suitability of a MAS DSML is defined in
our categorization as the ability to meet agent software requirements and
naturally the agent developers (the participants in our evaluation) preferred
using a MAS DSML which is capable of providing various modeling features
to design and implement any kind of MAS with changing requirements. The
Development Time sub-criterion of the Productivity criterion got the third
highest percentage with 7.4%. That shows the participants mostly agreed on
a MAS DSML is expected to contribute shortening the overall MAS develop-
ment time, i.e. design and implementation with a MAS DSML will take less
time in comparison with using the conventional tools and approaches which
are mostly just based on utilizing general purpose programming languages.
Finally, the lowest priority criterion was found to be the Attractiveness with
0.8% which is a little bit surprising since this means the good appearance of
a MAS DSML’s notations, symbols or other graphical interface components
has minimum priority for the participants. The global priority percentage
distribution of all these criteria and sub-criteria which effects the selection
of MAS DSML alternatives is also shown in the bar chart given in Figure 4.

The second questionnaire, made in the second step of the applied method-
ology, enabled to achieve the comparative evaluation results for the four MAS
DSMLs. As discussed in Sect. 5.2, each participant scored these MAS DSMLs
with comparing each other by taking into consideration the evaluation crite-
ria. Table 6 shows these results reflecting which MAS DSML is found better
according to which criterion. The subsequent columns after Glb. Prio. col-

29

Consolidated Result

Global Priority

Criteriaand sub-criteria

Figure 4: Effects of criteria and sub-criteria in AHP as percentage

umn show the priority scores of all MAS DSMLs for each criterion. For
example, in terms of the Maintainability criterion, SEA_ML was identified
as the most successful language with 0.389 priority score. Moreover, SEA_ML
stands out in comparison with the other alternative MAS DSMLs when we
take into account Extensibility, Reusability, Completeness, User Perception,
Model Checking, Compatibility with the Domain and Development Time cri-
teria. On the other hand, JACK received the highest priority scores for the
following evaluation criteria: Integrability, Appropriateness, Comprehensi-
bility, Learnability, Operability, Attractiveness, Compactness, Ease of Use of
the DSML, Ease of Use of the Tools, Correctness, Uniqueness, Orthogonal-
ity, Correspondence to Important Domain Concepts, Conflicting Elements,
Right Abstraction Level, Compatibility with the Development Process and
The Amount of Human Resource. Neither SAM nor PDT got the highest
priority scores in any of the existing criteria.

Finally, the bottom row in Table 6 shows the overall priority percentages
for the alternatives and indicates which MAS DSML comes to the fore as
the result of the comparative evaluation. It is worth indicating that these

30

%69°LT | %90°LT | %LTTE | %8608 | %0°00T soSejuaotod Ajurorid [[e1oAQ
(. 90IN0SAY
€61°0 €ec’0 01€°0 ¥9¢°0 %EY wewmyy jo unoUry oYy, o
6120 G810 €820 €160 %¥ L o], yustdoPas(] oY, Afapnpolq
] ;]]] $89001J Juatdopad(]
€4T°0 LTT°0 LT7°0 €1€°0 %61 oL, Wi Anrqryeduop
ureuto Ayqiqryeduwro;
9eT0 | QOTO| ege0 19€°0 %89 — %E:ge:om 1 D
GL1'0 191°0 0070 L9¢°0 %¥'C [0A9T uoIRISqY WSTY
¥61°0 88T°0 Sre0 €.20 %¥'€ SPULWR[E SUIIIFUO))
891°0 8ST°0] 81€°0 %6°C sydeouo)) ureto(]
) B oo ’ /00 juejrodumy 01 souspuodserio)) ssouaAIssoIdxr
0¢e’0 29T°0 6070 7020 AN Aypenosoyi0
691°0 G810 4% L12°0 %6°¢ ssouanbrup
%ﬂo mmﬂo Em”o ommuo &ﬂm mm,vwﬂpomhhoo AqEney
8410 4910 Geen €7E0 %0°€ SOy PPON
. S[0Q], O[3 JO
86T1°0 091°0 G170 preal %0°1 08(] Jo oS
ere0 | Tor0| 89E0 | L2T0 %eT qumo%um -e0L 1o eSe SoARWIY TINSC
¥51°0 9S1°0 €EV°0 L5270 %G 1 ssougoeduo)) SVIN JO Uonenesy
¥ST°0 ¥ST°0 69€°0 €€€°0 %80 SSOUOATIORII Y
1¢T°0 8¥1°0 L1670 €81°0 %1€ Aypqeredg Ayriqesn
1¢T°0 €81°0 00€°0 99¢€°0 %01 uorydedta g 10s()
Ge1'o 8¢1°0 8LV°0 8€C°0 %1 SOUIAIIDY JO IoquinN
¥61°0 8€T°0 6V7°0 6120 %S'C Aypiqenreay
cL10 1¢1°0 1€V°0 areo %EV Aypiqsuatpaduo)
9910 8€T°0 1,€°0 92e0 %L'8 ssoudyeridorddy Apqesmg euonoung
€61°0 0€1°0 8L¢0 86¢°0 %V'8 ssoudjo[duoy T]
8L1°0 881°0 ¢ee’0 ¢0€0 %v'S AnqiqerSejuy
7020 L81°0 10€°0 80€°0 %SG Anqiqesnoy
L8T°0 120 L8T°0 ary0 %19 ANIqISUR)XA]
€10 €120 G9¢°0 68¢°0 %ES AyI[iqreurejure]y
Ldd INVS MOV | TIN'VES | "oud 91D € [0A9] 7 G [9AY] 7 1 [0 0 [PA9]

Table 6: Evaluation scores of MAS DSML alternatives (SEA_ML, JACK, SAM, PDT)

31

percentages were calculated as discussed in Sect. 3 (see AHP Step 6). The
MAS DSML which has the highest priority level within the scope of all these
evaluation criteria is JACK with 34.27%. In other words, when a developer
needs to choose among these DSML alternatives in order to design and im-
plement a MAS, these results suggest preferring JACK. JACK was favoured
by the participants and selected as the most successful language considering
the majority of the criteria. Especially, the functional suitability and ease of
use features brought by the language as well as being compatible with exist-
ing AOSE methodologies and rapid integration into MAS development steps
make JACK as the first choice of the agent developers participated in this
evaluation. The fact that JACK is a commercial product that is actively used
in the industry and has continuous professional support and development also
contributed this result. The second most preferred MAS DSML is SEA_ML
with 30.98%. SEA_ML was found easy to maintain and add new model-
ing features and MAS implementation mechanisms to support various agent
execution platforms. Furthermore, the participants agreed that SEA_ML’s
all-embracing model of fundamental agent components enables the system
models compatible with the MAS domain and reusable for various applica-
tions. Validation of the MAS models before model-to-code transformations
and shortening the development time were also acknowledged by the partic-
ipants.

To conclude, the proposed AHP enabled the comparative evaluation of
four MAS DSML alternatives according to the defined set of criteria and
sub-criteria. Both the introduced AHP itself and the defined MAS DSML
evaluation criteria are generic and can be directly used for the comparative
evaluation of DSMLs different from the language group evaluated in this
study. According to the evaluators in this study, being appropriate for the
MDE of various agent models and MAS architectures is the most desirable
feature for a MAS DSML. Moreover, having a complete notation to realize
modeling a wide range of autonomous agents, their internal structures and
relations with each other is another important property which is favoured by
the agent developers to select a MAS DSML. Shortening the MAS develop-
ment time came third in the prioritization list of the participants. Among
the four MAS DSML alternatives, JACK was selected as the best language.
SEA_ML was the second most preferred DSML while SAM and PDT did not
favored by the developers in the overall assessment. However, these rankings
naturally pertain only to this comparison set of the languages and hence they
can not be generalized, i.e. within another group of MAS DSML alternatives,

32

maybe JACK can not be the most appropriate one while PDT or SAM can
step forth inside another language set.

5.5. Threats to the Validity

As it is the case in any evaluation study, there are also some threats to
the validity of the conducted evaluation. First, a relatively limited num-
ber of evaluators could participate in the assessment of the MAS DSMLs.
Compared to the many other computer science and software engineering
disciplines, AOSE is a young research field and hence the number of develop-
ers familiar with MAS implementations is relatively low. We observed that
recent studies [43], [20], [16], [8] on evaluating model-driven MAS develop-
ment approaches and/or using MAS DSMLs assigned the number of par-
ticipants close to the number of participants used in our study. Moreover,
various AHP-based software tool and methodology evaluation studies (e.g.
[48],[49],[30]) were realized with even smaller number of participants. Hence,
the number of the participants in our study can be considered acceptable for
the related research field. We paid attention on conducting this evaluation
only with the software developers who possess knowledge and experience on
programming agents and actively used all four MAS DSMLs being evaluated
during the construction of MAS for various domains. It is worth indicating
that the majority of the participants had also significant experience in de-
veloping large-scale software systems in the industry which contributed to
the usability evaluation of all MAS DSML alternatives. Nevertheless, the
number of our participants is satisfying considering Nielsen’s scale [66] for
usability studies.

Second, the participants’ previous knowledge and experience on the MAS
DSMLs being evaluated here, may affect prioritizing the evaluation crite-
ria and scoring these MAS DSMLs. A developer, who possesses deeper
knowledge and more experience in a specific MAS DSML, would most likely
favoured (or conversely does not preferred) this DSML. That may cause a
rather subjective formalization of the final hierarchy model. For an evaluator
group with changing levels of experience, the second questionnaire used in the
study can be extended with additional questions enabling the participants
evaluating themselves about their prior experience with each of these MAS
DSMLs and then a correlation analysis can be performed between these re-
sponses and already obtained responses on the selected DSMLs. However, in
our case, this risk is already mitigated with creating an evaluator group with
almost the same level of knowledge and experience on using all MAS DSMLs

33

being evaluated in this study. As also discussed in Sect. 5.2, all participants
previously used all these MAS DSMLs in the same software development
projects aiming to design and implement MAS for various domains and scale
during the AOSE-related graduate courses they took recently.

Third, the selection of the MAS DSML alternatives may have an influence
on the results. As indicated in Sect. 4.1, MAS DSMLs evaluated in this study
are well-known in the AOSE community and are being widely used both in
academic research and industrial agent system development. The evaluators
participated in our study had experience on using all these DSMLs which is
also another reason of selecting this alternative set. Moreover, the selected
MAS DSMLs are perhaps the most available ones whose IDEs and tools were
fully-functional at the time of conducting this study. Other agent modeling
languages such as AUML[31] and AML[32] could also be included into this
set of DSMLs. However, their tools were not available or working when this
study was conducted. Hence, the set of DSMLs selected in our study can
be considered a good sample for the evaluation. Finally, we can state that
the applied methodology provides the comparative evaluation of the MAS
DSMLs, i.e. DSMLs are evaluated inside the selected set and their priorities
(showing their adoption level by the evaluators) are determined only accord-
ing to the set of the current alternatives. Since both the evaluation criteria
and the AHP-based evaluation methodology introduced here are indepen-
dent from the selection of the MAS DSMLs, they can be directly used for
the comparative evaluation of any other group of MAS DSMLs.

6. Conclusion

An AHP-based evaluation methodology for the comparative evaluation of
MAS DSMLs has been introduced in this paper. For this purpose, a catego-
rized set of criteria which can be used for the multi-criteria decision making
has been defined. These criteria can be prioritized by the agent develop-
ers according to their modeling language expectations and the application
of the methodology allows the evaluation of MAS DSML alternatives based
on this prioritization. As the result of the automatic calculation of the im-
portance distributions, the best MAS DSML is determined. All stages of
the proposed methodology are supported with an online tool which enables
collecting evaluation data via questionnaires, calculating the distributions
and finally analyzing and displaying the results. The comparative evalua-
tion of four widely used MAS DSMLs, JACK, SAM, SEA_ML and PDT was

34

performed by using the proposed methodology. The conducted evaluation
showed that the agent developers prioritized appropriateness, completeness
and shortening the development time as the most significant criteria for the
MAS DSML assessment while the attractiveness of the notations had a min-
imum effect on preferring a language.

Favourite DSML for each comparison category and criteria was deter-
mined. In the overall assessment, JACK was selected as the best language
especially taking into account the functional suitability and ease of use fea-
tures. In practice, achieved results suggest that a developer can choose JACK
when there is a need to design and implement a MAS with varying agent
interaction and execution scenarios in addition to the different agent archi-
tectures and behavioral models (such as reactive or BDI) should be taken
into consideration during the specification and realization of the agent in-
ternals. Developers who use different AOSE methodologies may also benefit
from the IDE provided by JACK since our evaluation showed that its IDE
is more compatible with the development process of the many existing MAS
development methodologies and more importantly modeling with JACK can
be easily added as one of the main parts of these AOSE methodologies. Be-
ing a commercial product and hence having both professional support and
an extensive set of developer resources, examples and user manuals as well
as providing continuous updates may also lead selecting JACK during MAS
development. Finally, the results also showed that the developers may choose
SEA ML among these DSML alternatives, e.g. when adding new modeling
elements or code generation mechanisms is required to extend the support for
various MAS implementation platforms. SEA_ML can also be used when the
developers prefer working with a rich set of agent concepts with appropriate
notations mainly exist for modeling agent plan structures and knowledge-
bases, agent and service interactions, overall MAS organizations and agent
environments. SEA ML seems also a good choice for model checking since it
provides various automatic controls to eliminate the errors in instance MAS
models.

While applying the methodology, there is the possibility of an overall
assessment, as well as an assessment based on certain categories or criteria
which will be tailored to the needs of the users, e.g. agent software devel-
opers. Thus, it is possible to formalize a hierarchical structure which can
compare more than one MAS DSML according to all or subset of the defined
language criteria. Both the set of DSML evaluation criteria and the proposed
methodology are generic and can naturally be used during comparative eval-

35

uation of other MAS DSMLs. We plan to evaluate the MDE features of
other MAS DSMLs by applying the same methodology and integrate these
new results with the existing ones to extend the pool of alternative MAS
DSMLs. These new evaluations may also pave the way for enriching the
criteria definition and prioritization stages of the methodology, i.e. various
AHP hierarchy models can be derived for the MAS DSML assessments.

Finally, additional MCDM techniques can also be applied for comparing
MAS DSMLs again with using the same or the extended set of the evaluation
criteria we introduce in this paper. For instance, in our another future work,
we aim at using the Logic Scoring of Preference (LSP) [67, 68] which is a
general decision method for evaluating and selecting various hardware and
software systems. Especially, it can be possible to improve the specification
of the preference aggregation structure currently created in our methodology
with using LSP’s stepwise aggregation technique that covers the formaliza-
tion of the global preference by systematically aggregating the elementary
preferences e.g. for MAS DSML selection.

Acknowledgments

This study was funded by the Scientific and Technological Research Coun-
cil of Turkey (TUBITAK) under grant 115E591.

Conflict of interest

The authors declare no potential conflict of interests.

[1] G. Weiss, Multiagent Systems (Intelligent Robotics and Autonomous
Agents series) 2nd edition, The MIT Press, The MIT Press, 2016.

[2] J. Qin, Q. Ma, Y. Shi, L. Wang, Recent Advances in Consensus of
Multi-Agent Systems: A Brief Survey, IEEE Transactions on Industrial
Electronics 64 (2017) 4972-4983.

[3] B. Lejdel, Negotiation and cooperation between agents for generalizing
geographic objects, Journal of Computer Languages 51 (2019) 15-27.

[4] K. Tazi, F. M. Abbou, F. Abdi, Multi-agent system for microgrids:
design, optimization and performance, Artificial Intelligence Review 53
(2020) 1233-1292.

36

[5]

[10]

[11]

[13]

[14]

F. Zambonelli, A. Omicini, Challenges and Research Directions in
Agent-Oriented Software Engineering, Autonomous Agents and Multi-
Agent Systems 9 (2004) 253-283.

V. J. Koeman, K. V. Hindriks, C. M. Jonker, Designing a source-level
debugger for cognitive agent programs, Autonomous Agents and Multi-
Agent Systems 31 (2017) 941-970.

V. Mascardi, D. Weyns, A. Ricci, Engineering Multi-Agent Systems:
State of Affairs and the Road Ahead, ACM SIGSOFT Software Engi-
neering Notes 44 (2019) 18-28.

G. Kardas, B. T. Tezel, M. Challenger, Domain-specific modelling
language for belief-desire—intention software agents, IET Software 12
(2018) 356-364.

G. Kardas, Model-driven development of multi-agent systems: a survey
and evaluation, The Knowledge Engineering Review 28 (2013) 479-503.

M. Mernik, J. Heering, A. M. Sloane, When and how to develop domain-
specific languages, ACM Computing Surveys 37 (2005) 316-344.

T. Kosar, S. Bohra, M. Mernik, Domain-Specific Languages: A System-
atic Mapping Study, Information and Software Technology 71 (2016)
77-91.

U. Frank, Domain-Specific Modeling Languages: Requirements Analysis
and Design Guidelines, in: I[. Reinhartz-Berger, A. Sturm, T. Clark,
S. Cohen, J. Bettin (Eds.), Domain Engineering, Springer, 2013, pp.
133-157.

C. Hahn, A domain specific modeling language for multiagent systems,
in: Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems (AAMAS 2008) -Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, 2008, pp.
233-240.

M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, T. Kosar,
On the use of a domain-specific modeling language in the development of
multiagent systems, Engineering Applications of Artificial Intelligence
28 (2014) 111-141.

37

[15]

[16]

[17]

[18]

[19]

E. J. T. Goncalves, M. I. Cortes, G. A. L. Campos, Y. S. Lopes, E. S.
Freire, V. T. da Silva, K. S. F. de Oliveira, M. A. de Oliveira, MAS-
ML 2.0: Supporting the modelling of multi-agent systems with different
agent architectures, Journal of Systems and Software 108 (2015) 77-109.

J. Faccin, I. Nunes, Sam: a Tool to Ease the Development of Intelligent
Agents, Engineering Applications of Artificial Intelligence 62 (2017)
195-213.

D. Sredejovic, M. Vidakovic, M. Ivanovic, =~ ALAS: agent-oriented
domain-specific language for the development of intelligent distributed

non-axiomatic reasoning agents, Enterprise Information Systems 12
(2018) 1058-1082.

S. HoseinDoost, T. Adamzadeh, B. Zamani, A. Fatemi, A model-driven
framework for developing multi agent systems in emergency response
environments, Software and Systems Modeling 18 (2019) 1985-2012.

G. Kardas, J. Gomez-Sanz, Special issue on model-driven engineering
of multi-agent systems in theory and practice, Computer Languages,
Systems & Structures 50 (2017) 140-141.

G. Kardas, E. Bircan, M. Challenger, Supporting the platform extensi-
bility for the model-driven development of agent systems by the inter-
operability between domain-specific modeling languages of multi-agent
systems, Computer Science and Information Systems 14 (2017) 875-912.

F. Bergenti, E. Iotti, S. Monica, A. Poggi, Agent-oriented model-driven
development for JADE with the JADEL programming language, Com-
puter Languages, Systems & Structures 50 (2017) 142-158.

T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, 1980.

O. S. Vaidya, S. Kumar, Analytic hierarchy process: An overview of
applications, European Journal of operational research 169 (2006) 1-29.

G. Kou, Y. Peng, G. Wang, Evaluation of clustering algorithms for
financial risk analysis using MCDM methods, Information Sciences 275
(2014) 1-12.

38

[25]

[26]

[27]

[28]

[29]

[31]

[32]

[33]

F. Dweiri, S. Kumar, S. A. Khan, V. Jain, Designing an integrated
AHP based decision support system for supplier selection in automotive
industry, Expert Systems with Applications 62 (2016) 273 283.

L. Zhu, A. Aurum, I. Gorton, R. Jeffery, Tradeoff and Sensitivity Anal-
ysis in Software Architecture Evaluation Using Analytic Hierarchy Pro-
cess, Software Quality Journal 13 (2005) 357-375.

C.-C. Huang, F.-Y. Lin, F. Y.-S. Lin, Y. S. Sun, A novel approach to
evaluate software vulnerability prioritization, Journal of Systems and
Software 86 (2013) 2822-2840.

H. Ma, Z. Hu, L. Yang, T. Song, User feature-aware trustworthiness
measurement of cloud services via evidence synthesis for potential users,
Journal of Visual Languages & Computing 25 (2014) 791-799.

A. Kaur, K. Kaur, Investigation on test effort estimation of mobile
applications: Systematic literature review and survey, Information and
Software technology 110 (2019) 56-77.

P. Pandey, R. Litoriya, Software process selection system based on mul-
ticriteria decision making, Journal of Software: Evolution and Process
(2020). doi:10.1002/smr.2305.

B. Bauer, J. P. Muller, J. Odell, Agent UML: A formalism for spec-
ifying multiagent software systems, International Journal of Software
Engineering and Knowledge Engineering 11 (2001) 207-230.

R. Cervenka, I. Trencansky, M. Calisti, D. Greenwood, AML: Agent
Modeling Language Toward Industry-Grade Agent-Based Modeling,
Lecture Notes in Computer Science 3382 (2005) 31-46.

J. Pavén, J. Gdémez-Sanz, R. Fuentes, Model driven develop-
ment of multi-agent systems, in: FEuropean Conference on Model
Driven Architecture-Foundations and Applications (ECMDA-FA 2006),
Springer, 2006, pp. 284-298.

J. Thangarajah, L. Padgham, M. Winikoff, Prometheus design tool, in:
Proceedings of the fourth international joint conference on Autonomous

39

[39]

[40]

[41]

[42]

[43]

agents and multiagent systems (AAMAS 2005), International Founda-
tion for Autonomous Agents and Multiagent Systems, 2005, pp. 127—
128.

J. M. Gascuena, E. Navarro, A. Ferndndez-Caballero, Model-driven
engineering techniques for the development of multi-agent systems, En-
gineering Applications of Artificial Intelligence 25 (2012) 159-173.

R. Fuentes-Ferndndez, 1. Garcia-Magarino, A. M. Gdémez-Rodriguez,
J. C. Gonzédlez-Moreno, A technique for defining agent-oriented en-
gineering processes with tool support, Engineering Applications of Ar-
tificial Intelligence 23 (2010) 432-444.

G. Ciobanu, C. Juravle, Flexible software architecture and language for
mobile agents, Concurrency and computation: practice and experience
24 (2012) 559-571.

S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, M. Mernik,
A DSL for the development of software agents working within a semantic
web environment, Computer Science and Information Systems 10 (2013)
1525-1556.

M. Eysholdt, H. Behrens, Xtext: implement your language faster than
the quick and dirty way, in: Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (SPLASH/OOPSLA 2010), ACM, 2010, pp.
307-309.

A. S. Rao, M. P. Georgeff, Decision procedures for BDI logics, Journal
of Logic and Computation 8 (1998) 293-343.

Y. Wautelet, M. Kolp, Business and model-driven development of BDI
multi-agent systems, Neurocomputing 182 (2016) 304-321.

Y. Wautelet, S. Heng, S. Kiv, M. Kolp, User-story driven development of
multi-agent systems: A process fragment for agile methods, Computer
Languages, Systems & Structures 50 (2017) 159-176.

M. Challenger, G. Kardas, B. Tekinerdogan, A systematic approach to
evaluating domain-specific modeling language environments for multi-
agent systems, Software Quality Journal 24 (2016) 755-795.

40

[44]

[45]

[46]

[47]

[48]

[49]

[53]

T. Miranda, M. Challenger, B. T. Tezel, O. F. Alaca, A. Barisic,
V. Amaral, M. Goulao, G. Kardas, Improving the Usability of a MAS
DSML, in: 6th International Workshop on Engineering Multi- Agent Sys-
tems (EMAS 2018), Lecture Notes in Artificial Intelligence, vol. 11375,
Springer, 2019, pp. 55-75.

I. Korkmaz, H. Gokcen, T. Cetinyokus, An analytic hierarchy process
and two-sided matching based decision support system for military per-
sonnel assignment, Information Sciences 178 (2008) 2915-2927.

M. P. Amiri, Project selection for oil-fields development by using the
AHP and fuzzy TOPSIS methods, Expert systems with applications 37
(2010) 6218-6224.

F. Samanlioglu, Z. Ayag, A fuzzy AHP-VIKOR approach for evaluation
of educational use simulation software packages, Journal of Intelligent
& Fuzzy Systems 37 (2019) 7699-7710.

Y. K. Chiam, M. Staples, X. Ye, L.. Zhu, Applying a selection method
to choose Quality Attribute Techniques, Information and Software tech-
nology 55 (2013) 1419-1436.

G. Zhang, H. Ye, Y. Lin, Quality attribute modeling and quality aware
product configuration in software product lines, Software Quality Jour-
nal 22 (2014) 365-401.

M. Asadi, S. Soltani, D. Gasevic, M. Hatala, E. Bagheri, Toward au-
tomated feature model configuration with optimizing non-functional re-
quirements, Information and Software Technology 56 (2014) 1144-1165.

L. Lu, Y. Yuan, A novel TOPSIS evaluation scheme for cloud service
trustworthiness combining objective and subjective aspects, Journal of
Systems and Software 143 (2018) 71-86.

A. M. Akbar, A. A. Khan, S. Mahmood, A. Alsanad, A. Guamei, A
robust framework for cloud-based software development outsourcing fac-
tors using analytical hierarchy process, Journal of Software: Evolution
and Process (2020). doi:10.1002/smr.2275.

P. Davidsson, S. Johansson, M. Svahnberg, Using the analytic hierar-
chy process for evaluating multi-agent system architecture candidates,

41

[56]

[62]

in: International Workshop on Agent-Oriented Software Engineering
(AOSE 2005), Springer, 2005, pp. 205-217.

T. L. Saaty, How to make a decision: the analytic hierarchy process,
European journal of operational research 48 (1990) 9-26.

T. L. Saaty, Fundamentals of the analytic hierarchy process, in: D. L.
Schmoldt, J. Kangas, G. A. Mendoza, M. Pesonen (Eds.), The ana-
lytic hierarchy process in natural resource and environmental decision
making, Springer, 2001, pp. 15-35.

M. Challenger, B. T. Tezel, O. F. Alaca, B. Tekinerdogan, G. Kardas,
Development of semantic web-enabled BDI multi-agent systems using
SEA _ML: an electronic bartering case study, Applied Sciences 8 (2018)
1-32.

G. Kahraman, S. Bilgen, A framework for qualitative assessment of
domain-specific languages, Software & Systems Modeling 14 (2015)
1505-1526.

J. J. Gomez-Sanz, R. Fuentes-Fernandez, Understanding Agent-
Oriented Software Engineering methodologies, The Knowledge Engi-
neering Review 30 (2015) 375-393.

T. R. G. Green, M. Petre, Usability Analysis of Visual Programming
Environments: A ’Cognitive Dimensions’ Framework, Journal of Visual
Languages and Computing 7 (1996) 131-174.

T. R. G. Green, A. E. Blandford, L. Church, C. R. Roast, S. Clarke,
Cognitive dimensions: Achievements, new directions, and open ques-
tions, Journal of Visual Languages and Computing 17 (2006) 328-365.

T. Kosar, N. Oliveira, M. Mernik, M. J. Varanda Pereira, M. Crepin-
sek, D. da Cruz, P. R. Henriques, Comparing General-Purpose and
Domain-Specific Languages: An Empirical Study, Computer Science
and Information Systems 7 (2010) 247-264.

N. Howden, R. Ronnquist, A. Hodgson, A. Lucas, JACK intelligent
agents-summary of an agent infrastructure, in: 5th International Con-
ference on Autonomous Agents (AGENTS 2001), volume 162, Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2001.

42

[63]

L. Padgham, M. Winikoff, Prometheus: A practical agent-oriented
methodology, in: B. Henderson-Sellers (Ed.), Agent-oriented method-
ologies, IGI Global, 2005, pp. 107-135.

K. D. Goepel, AHP Online System - AHP-OS,
https://bpmsg.com/ahp/ahp.php, 2019. Accessed: 2020-10-30.

K. D. Goepel, Implementation of an online software tool for the ana-
lytic hierarchy process (AHP-OS), International Journal of the Analytic
Hierarchy Process 10 (2018).

J. Nielsen, How many test users in a usabil-
ity study, Nielsen ~Norman Group 4 (2012). URL:
https://www.nngroup.com/articles/how-many-test-users/.

J. J. Dujmovié, A method for evaluation and selection of complex hard-
ware and software systems, in: Proceedings of the 22nd International
Conference for the Resource Management & Performance Evaluation of
Enterprise Computing Systems (CMG96), 1996, pp. 368-378.

J. J. Dujmovi¢, Continuous Preference Logic for System Evaluation,
IEEE Transactions on Fuzzy Systems 15 (2007) 1082-1099.

43

Tansu Zafer Asici: Investigation, Software, Methodology, Visualization, Writing
- Original Draft

Baris Tekin Tezel: Conceptualization, Methodology, Validation, Writing -
Original Draft

Geylani Kardas: Conceptualization, Methodology, Supervision, Writing - Original
Draft, Writing - Review & Editing

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[OThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

