
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022 20869

Virtualizing Intermittent Computing
Çağlar Durmaz , Kasım Sinan Yıldırım , Member, IEEE, and Geylani Kardas

Abstract—Intermittent computing requires custom
programming models to ensure the correct execution of
applications despite power failures. However, existing program-
ming models lead to the programs that are hardware dependent
and not reusable. This article aims at virtualizing intermittent
computing to remedy these problems. We introduce PureVM, a
virtual machine that abstracts a transiently powered computer,
and PureLANG, a continuation-passing-style programming
language to develop programs that run on PureVM. This
virtualization, for the first time, paves the way for portable and
reusable transiently powered applications.

Index Terms—Batteryless Internet of Things (IoT), domain-
specific language, energy harvesting, intermittent computing,
virtual machine.

I. INTRODUCTION

IN THE past decade, the progress in energy harvesting cir-
cuits and the decrease in power requirements of processing,

sensing, and communication hardware promised the poten-
tial of freeing the Internet of Things (IoT) devices from their
batteries. Recent works demonstrated several microcontroller-
based devices that can work without the need for batteries
by harvesting energy from ambient sources, such as solar
and radio frequency [1]–[3]. Batteryless devices store the har-
vested ambient energy into a tiny capacitor that powers the
microcontroller and the peripherals. A batteryless device can
compute, sense, and communicate when the energy stored
in its capacitor is above an operating threshold. It turns off
and loses its volatile state (e.g., the contents of the CPU,
peripheral registers, and the volatile memory) when the energy
level drops below this threshold. The device can turn on only
after charging its capacitor again. This phenomenon, i.e., the
intermittent execution due to power failures, led to the emer-
gence of a new computing paradigm, the so-called intermittent
computing [4], [5].

During intermittent execution, batteryless devices use the
harvested energy to perform a short burst of computation.
To recover their computation state and progress computation
forward after a power failure, they need to save the com-
putation state in nonvolatile memory before a power failure.
Recent studies proposed programming models for intermittent

Manuscript received 28 November 2021; revised 19 April 2022; accepted
13 May 2022. Date of publication 19 May 2022; date of current ver-
sion 24 October 2022. This work was supported by TUBITAK SME R&D
Start-Up Support Program under Project 7190539. (Corresponding author:
Kasım Sinan Yıldırım.)

Çağlar Durmaz and Geylani Kardas are with the International
Computer Institute, Ege University, 35100 Izmir, Turkey (e-mail:
caglar.durmaz@ege.edu.tr; geylani.kardas@ege.edu.tr).

Kasım Sinan Yıldırım is with the Department of Information Engineering
and Computer Science, University of Trento, 38123 Trento, Italy (e-mail:
kasimsinan.yildirim@unitn.it).

Digital Object Identifier 10.1109/JIOT.2022.3176587

computing to support these state logging and recovery oper-
ations. The proposed programming models provide language
constructs (i.e., either checkpoints [5] or tasks [6]) to: 1) main-
tain the forward progress of computation and 2) keep the
memory (i.e., computation state) consistent. However, with
these models, programmers need to deal with the low-level
details of the intermittent execution [7]. In particular, existing
models pose the following deficiencies.

Explicit Burst Management: Programmers need to design
their programs as a set of computation bursts that should fit in
the capacitor. Thus, they explicitly identify the boundaries of
these bursts via checkpoint placement or task decomposition.
This situation increases the programming effort considerably.
Even though [8] can automatically generate burst boundaries
without programmer intervention, it is limited to checkpoint-
based programs developed via the programming model in [9].

Hardware Dependency: The active time of a batteryless
device depends on its capacitor size and its power consump-
tion, i.e., its hardware configuration [10]. Programmers might
need to identify different burst boundaries to execute their
programs on a new device with a different hardware config-
uration. Alternatively, programs should be reanalyzed (e.g.,
via [8]) every time the program source changes since even
minor modifications might lead to burst boundaries that do not
fit in the capacitor. Therefore, existing intermittent programs
are not portable, and in turn, not reusable.

Explicit I/O Management: Power failures that occur dur-
ing I/O or interrupt handling might leave the memory in an
inconsistent state. With existing models, programmers need to
manually ensure the atomic execution of interrupt handlers or
I/O operations [11]. This situation increases the programming
burden and makes programs error prone.

In this article, we aim at virtualizing intermittent comput-
ing to remedy the deficiencies mentioned above. We introduce
PureVM virtual machine and its software interface PureLANG
language that abstract away the complicated aspects of inter-
mittent execution. Thanks to PureVM and PureLANG, pro-
grammers focus only on their application logic, forget about
power failures as if they are programming continuously pow-
ered systems, and develop portable intermittent programs.
Shortly, this article introduces the following contributions.

1) PureVM Virtual Machine: We introduce PureVM, the
first virtual machine for intermittent systems, which
abstracts a transiently powered computer. This abstrac-
tion hides the details of intermittent execution and
enables platform-independent program development via
its implementations targeting different hardware (see
Fig. 1).

2) PureLANG Language: We introduce PureLANG, a
continuation-passing-style programming language,

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6048-7231
https://orcid.org/0000-0002-9528-6923
https://orcid.org/0000-0001-6975-305X

20870 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

Fig. 1. Using PureLANG, a continuation-passing-style programming lan-
guage, and PureVM, whose specification enables the execution of programs
written in PureLANG, programmers can develop programs portable across
several hardware platforms; without dealing with the intermittent execution.

intended to prevent programmers from reasoning
about intermittent execution. PureLANG programs are
translated into a set of recomposable and atomically
executed PureVM instructions, i.e., primitive functions.
In the continuation-passing style of programming,
functions do not return values [12]. Rather, they pass
control onto a continuation, which represents the
current state of the computation [13]. The overhead of
persisting the control flow via continuations is static
and lower than that of persisting the whole call stack.

To the best of our knowledge, our work proposes the first vir-
tualization attempt for intermittent computing. PureVM and
PureLANG create the fundamental building blocks of inter-
mittent computing from scratch that pave the way for portable
transiently powered applications.

II. BACKGROUND AND RELATED WORK

Frequent power failures lead to intermittent execution that
poses several challenges to developing batteryless applications.
We classify these challenges into two classes: 1) computa-
tion and I/O related challenges (A1–A3) and 2) programming
challenges (B1 and B2). We describe them as follows.

A1—Nontermination and Memory Consistency: Power fail-
ures hinder the forward progress of the computation, which
leads to nonterminating programs [14]. Nontermination occurs
when the energy budget of the batteryless device is not
enough to progress forward. This means that the energy stored
in the capacitor is not sufficient to execute the instructions
between two adjacent checkpoints or in the task boundaries.
Therefore, the device keeps executing the same portion of
code and cannot terminate. Power failures might also lead
to memory inconsistencies [15]. To give an example, assume
that a program is modifying the persistent variable var (i.e.,
a variable kept in nonvolatile memory) by executing the code
block {vector[var++]=10;}. Since the variable var is
updated after it is read, there is a Write-After-Read (W.A.R.)
dependency. If a power failure occurs at this point, the reex-
ecution of this code will increment the variable var again.
Therefore, another element of the vector will be set to 10
in this case. Due to the W.A.R. dependency, there is a violation
of idempotency since repeated computation produces different
results. To prevent these issues, programmers should divide

their programs into a set of idempotent code blocks (e.g.,
tasks [6]) that can execute atomically in a power cycle and can
be safely restarted despite W.A.R. dependencies. A runtime
library (e.g., [4] and [16]) is required to persist the program
state in the nonvolatile memory, to manage power failures, and
to reexecute the code blocks that could not complete in the
previous power cycle.

A2—Control-Flow Inconsistencies: If the control flow
depends on external inputs such as sensor readings, power fail-
ures might lead to erratic program behavior [17]. In particular,
programmers need to pay special attention to implementing
conditional statements that check persistent variables, whose
values might be updated during I/O operations. For exam-
ple, consider the case that a program reads a temperature
value (temp = read_sensor();) and sets the variable
cooling based on the temperature reading (if(temp >
limit) then cooling = true; else heating =
true;). If the temperature is less than a predefined limit,
the variable heating will be set to true. If there is a power
failure right after this operation and the program reexecutes,
the program might read another temperature value higher
than the limit. In this case, the program will set the vari-
able cooling to true. At this point, both of the variables
cooling and heating are true, which is logically incor-
rect [17]. These variables represent different actions, which
should not be triggered simultaneously.

A3—Handling Interrupts: Interrupts cause dynamic
branches, which move the control from the main thread of
execution to the interrupt service routine. The main program
and interrupt service routines might share the persistent state.
If an interrupt service routine leaves the shared persistent
variables partially updated due to a power failure, this
situation might lead to memory inconsistencies [11].

B1—Platform Dependencies: The execution time of an
intermittent program depends on several factors, such as avail-
able harvestable energy in the environment, the capacitor
size (i.e., energy storage capacity), and the energy consump-
tion profile of hardware and software. Intermittent programs
need to be modified and restructured regarding these fac-
tors to eliminate nontermination and ensure computational
progress [14].

B2—Reusability and Maintaining Difficulties: Platform and
runtime dependencies make implementing reusable intermit-
tent programs difficult [7]. For example, programmers using
task-based models need to deal with task decomposition
and task-based control flow [6]. Handling these issues is
complicated and leads to the programs that are difficult to
maintain.

A. State of the Art

We classify the prior art based on how they addressed the
aforementioned challenges.

Checkpoint-Based Systems: Checkpointing runtime environ-
ments (e.g., [9] and [18]–[20]) persist the registers, global
variables, and the call-stack of programs into nonvolatile
memory at specific instants during program execution, to pre-
serve the forward progress of computation (A1). Just-in-time

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

DURMAZ et al.: VIRTUALIZING INTERMITTENT COMPUTING 20871

checkpointing runtimes (e.g., [19] and [20]) reactively save
the computation state only when forward progress is com-
promised. A monitoring circuit checks the capacitor of the
device, and an interrupt is triggered when the energy level is
under a threshold to initiate a checkpoint. This strategy elimi-
nates programmer intervention (to statically place checkpoints
at compile time), but requires a hardware support [21]. In
software-only approaches (e.g., [9] and [18]), programmers
insert checkpoints manually at compile time. In particular,
checkpointing overhead is closely related to the size of the
call stack. Due to the call stack’s dynamic nature (i.e., it
grows and shrinks at runtime), the overhead of checkpoints
is not static and varies during program execution. Thus, the
energy stored in the capacitor might not be sufficient to execute
the instructions between two adjacent checkpoints. Therefore,
checkpoint placement is platform dependent and checkpointed
programs are not reusable. Recent work [8] uses a statisti-
cal model of the energy consumption of each program path
and performs automatic program transformation by determin-
ing checkpoint boundaries and placement in [9] to eliminate
nontermination. There are also other studies (e.g., [5], [14],
and [22]–[25]) that provide compilers to translate C programs
into intermittent programs without programmer intervention.
However, the C language does not provide abstractions for
interrupt handling (A3) and atomic I/O (A2) operations on
intermittent systems. The absence of these abstractions might
lead to memory inconsistencies and nontermination.

Task-Based Systems: Task-based models (e.g., [4], [6],
[11], [16], [26], and [27]) require programmers to struc-
ture their programs as a collection of idempotent and atomic
tasks. They eliminate the need for the call stack and check-
points by employing GOTO-style transitions among tasks, i.e.,
task-based control flow. However, this is an unstructured pro-
gramming style that leads to programs that are not reusable
and that are prone to bugs [28]. Task-based programming also
leads to platform-dependent code since task sizes depend on
the capacitor size of the platform. To the best of our knowl-
edge, there is not any solution in the literature that can perform
automatic task decomposition for task-based systems without
programmer intervention. Recent work [7] provides tasks with
parameters and continuation passing [12] via closures, which
enables reusable code by delivering the control flow in a struc-
tured way, similar to function calls. However, it also leads to
the platform-dependent code because of static task sizes.

B. Our Differences

Table I provides a comparison of our work with the state
of the art. We propose an intermittent computing solution
composed of a virtual machine (PureVM), a programming
language (PureLANG), and a compiler. We design PureVM
to abstract the intermittent execution details and give the pro-
grammer a continuously powered view of the target device.
This abstraction provides platform-independent code via its
multiple compilers for multiple hardware. PureLANG is the
software interface of PureVM. PureLANG programs are trans-
lated into a sequence of primitive functions, which are the
smallest computation blocks that PureVM executes atomically

TABLE I
STATE-OF-THE-ART RUNTIMES AND MENTIONED CHALLENGES

despite power failures. Thanks to this two-layered abstraction,
our work overcomes all mentioned challenges of intermittent
computing (i.e., A1–A3 and B1 and B2).

III. PURELANG LANGUAGE

PureLANG is a statically typed and event-driven program-
ming language. Programmers develop PureLANG applications
via objects and functions that operate on them, and do
not reason about intermittent execution. PureLANG employs
continuation-passing style [12] where the program control
flow is passed explicitly via continuations. Each function (or
expression) takes one flow-in object in addition to its param-
eters and passes one flow-out object to the next function (or
expression) that handles the rest of the computation. Therefore,
each continuation contains a reference to a flow-in object, a
set of object references as parameters, and a function refer-
ence to be applied. Events are continuations that are created
by interrupt handlers.

PureVM persists continuations in nonvolatile memory to
ensure forward progress. The overhead of persisting a contin-
uation is static (since it contains only a function reference and
a certain number of object references) compared to persisting
the call stack whose size is dynamic in procedural languages.
During program execution, PureVM applies the function on
the flow-in object by using the information stored in the cur-
rent continuation. Since PureLANG functions always operate
on objects (kept in nonvolatile memory), PureVM can track the
updates on these objects to preserve data consistency despite
power failures.

A. PureLANG Types and Primitive Functions

Primitive functions are the high-level instructions, which
execute atomically and form the interface between the
PureLANG and PureVM. As an analogy with task-based
systems [4], [6], [11], [16], [26], [29], primitive functions
are the atomic tasks that are reusable building blocks. A
PureLANG program is a composition of these atomic blocks.

Parameteric and Arrow Type: PureLANG has built-in object
types Int, Float, Bool, and Void, which are reference
types that point an address in memory. Moreover, PureLANG
offers parametric types that are used to specify the type later.
As an example, the select primitive function (Fig. 2, lines
1–3) returns one of two objects t or f of the same parametric

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

20872 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

Fig. 2. Example PureLANG primitive and control-flow functions. The
control-flow only depends on two primitive functions apply and select in
PureLANG.

Fig. 3. add primitive function for Int type.

type %a as a flow-out object. The objects referenced by t
and f can be of any type but same. The primitive function
select makes the decision based on the value of the Boolean
flow-in object b. Functions with the parametric type (also
known as parametric polymorphism) eliminate code dupli-
cation. Without parametric polymorphism, select method
needs different implementations for different types. As another
example, the primitive function apply (Fig. 2, line 5) applies
the given function on the flow-in object of parametric type
%a and returns a flow-out object of parametric type %b. It
also takes a function reference func as a parameter, which
takes an object of parametric type %a and returns an object
of parametric type %b. This is indicated by using arrow type
decleration depicted as %a->%b. In the body of the primi-
tive function (Fig. 2, line 6), func is called by passing the
flow-in object a. Note that func returns an object of type %b,
which is compatible with the flow-out object type of apply.
It is worth indicating that every built-in type has its arithmetic
operations—see add primitive function for Int type in Fig. 3.
Primitive functions can implement any arithmetic and logic
operation. Moreover, user-defined primitive functions are also
possible.

IO Primitives: PureLANG introduces IO primitive functions
to eliminate control-flow inconsistencies during I/O operations
(A2). IO metadata (e.g., see getTemp function in Fig. 2,
line 9) help the PureLANG compiler to handle these operations
differently. The compiler splits PureLANG code blocks with
IO primitives into three sections: 1) pre-IO primitive; 2) IO
primitive itself; and 3) post-IO primitive. After each section
executes, PureVM takes control to persist computational state,
which ensures the atomic execution of the IO primitive.

Type Checking: Arrow and parametric type declarations help
the PureLANG compiler for type inference and type checking.
While decomposing the program into its primitive functions,

the PureLANG compiler performs type checking by using
input and output type metadata to eliminate (B2)-type bugs.
The compiler also infers the variable types automatically when
the programmer does not declare them explicitly.

Resolving W.A.R. Dependencies: Primitive functions also
specify a metadata concerning write operations on objects. As
an example, the write in the definition of getTemp function
tells the compiler that this function modifies the flow-in object
x. While decomposing the program into its primitive functions,
the compiler can resolve W.A.R. dependencies using this meta-
data. This situation helps PureVM to execute the intermittent
program correctly by preserving the memory consistency (to
ensure A1). Considering the target PureVM implementation,
PureLANG compiler instruments the bodies of the functions
by inserting the necessary undo logging or redo logging code
explained in Section IV.

B. PureLANG Statements and Control Flow

Since PureLANG employs structured programming, com-
plex expressions are formed by composing other expressions
(and primitive functions). The dot operator (.) enables expres-
sion composition as long as the output type of subexpression
is compatible with the input type of the following subexpres-
sion. The last statement in a function body determines the
output object that should be compatible with the output type
of the function. Thanks to the continuation-passing style of
the language, all statements forming the complex behavior of
a function execute in order. Therefore, there is no need for the
PureVM to check branches and early exits.

Control Flow: In PureLANG, every function related to the
control flow is a composition of select and apply prim-
itive functions. For example, ifElse function (Fig. 2, lines
14–16) enables a conditional branch by invoking the apply
and select primitive functions in order. The first parame-
ter s is a function that takes an object of parametric type %a
and returns a Boolean object. First, the function s is applied
on the flow-in object p, which pipes a Boolean object (i.e.,
p.apply(s) in line 11, which returns Boolean). Then, the
returned object becomes a flow-in object for the select
primitive, which returns one of the functions from t and f
by considering the flow-in Boolean object. The returned func-
tion object is assigned to the variable func. Then, func is
applied to the flow-in object p, and an object of %b type is
returned (line 12). select and apply primitive functions,
and the anonymous functions are enough to make PureLANG
Turing-complete. Anonymous function is a language construct
declaring continuation. apply primitive runs the continua-
tions. select primitive, dynamically, selects the continuation
(branch) to be applied. All other control-flow functions are
the composition of select and apply. The implementations
of if and while statements are presented in Fig. 4. The
other control-flow functions in the PureVM standard library
are switch, for, map, reduce, and filter. We omit
their listings due to the interest of space.

C. Putting Things Together: Sample-Sensing Application

Fig. 5 presents an event-driven air monitoring application,
which includes an application source code and a configuration

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

DURMAZ et al.: VIRTUALIZING INTERMITTENT COMPUTING 20873

Fig. 4. Other control-flow functions if and while.

Fig. 5. Sample monitoring application in PureLANG. The application code
contains all semantics of the computation, PureVM settings defining the events
of the program and platform-specific attributes. Interrupt code is for receiving
the values from environment (e.g., sensors).

file. PureLANG compiler (implemented using Xtext [30])
produces C code from the given PureLANG program. The
generated code includes a single C source file and its header.
The source file also contains the implementation of the target
PureVM. The PureLANG compiler requires a configuration
file, which mainly contains the list of event handlers, the name
of the target hardware platform, and some specific parameters
of the selected PureVM implementation (such as nonvolatile
memory size and the size of the event queue).

The application code contains the objects, methods, and
interrupt handlers. The event handlers boot, reboot, and
sleep (which is not shown in the figure), are mandatory.
The boot event occurs the first time the computer boots
after being deployed. The reboot event occurs after recov-
ery from a power failure, which triggers the reboot handler
that restores the state of the computation. PureVM triggers
the sleep handler when there is no event to be processed,
which puts the processor in a low-power mode to save energy.
The timer interrupt handler (lines 17–19) adds an event to

the event queue of PureVM by calling addEventQ method
with the sensed temperature value (via readTemp) and the
corresponding event handler (which is control in this case)
as parameters. PureVM processes this event by calling the
control event handler (lines 8–10), which processes the
events generated from the timer interrupt service routine.
Inside this routine, the heater is turned on or off based on
the received temperature value (line 9).

IV. PUREVM INTERMITTENT VIRTUAL MACHINE

PureVM is a single-input/single-output system that specifies
a runtime environment for event-driven intermittent program-
ming. PureLANG programs execute, without any modification,
on different hardware and runtime environments conforming
PureVM specification.

PureVM specification comprises an event queue, a non-
volatile object memory, and a continuation executed by its
runtime engine. PureVM pushes the events generated by the
interrupt service routines to the event queue. PureVM removes
the event at the head of the event queue and creates a con-
tinuation in object memory using that event. As mentioned,
continuation represents the control state of the computer pro-
gram, and it consists of a set of objects and methods to
be applied. Running a continuation may create/return another
continuation. PureVM runs the continuations until there is no
returned continuation. When there is no event to consume in
the queue, PureVM sleeps until an interrupt generates an event.

PureVM state (which represents the computational state)
is composed of the events in the queue, the continuation of
the running event, and the global objects. The object memory
region in nonvolatile memory maintains the global objects and
the running continuation. Before calling the next function (i.e.,
running the subsequent continuation), PureVM can decide to
persist the state in object memory to preserve forward compu-
tation and not to lose the intermediate results in case of power
failures.

PureVM specifies the artifacts (event buffer, object memory,
runtime engine, and running program) and their relationships
abstractly. For example, the event buffer can be imple-
mented as a regular first-in–first-out (FIFO) queue or a
priority queue, as long as the system’s single-input behav-
ior is not violated. Different design choices can lead to
different PureVM implementations. In the following sec-
tion, we describe RewindingVM, which is our main PureVM
implementation.

A. RewindingVM: Undo-Logging PureVM

RewindingVM stores the execution context in the contin-
uation stack and keeps the object memory consistent across
power failures via the undo-logging mechanism. Events in
the event queue, global objects, and continuation stack in the
object memory represent the computational state. The meta-
data about the continuation stack are stored in the runtime
data region of the object memory.

Event Handling: RewindingVM provides a queue for event
buffering, which holds the event objects and the methods
that need to be applied to these objects (Event Queue in

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

20874 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

Fig. 6. Steps taken by RewindingVM to execute the control event described in Fig. 5. In the lower right corner of the figure, a part of the compiler
generated code is presented. The compiler splits the control method into primitive functions and then recomposes into its basic blocks.

Fig. 6). RewindingVM runtime engine stores the continuations
in a stack in object memory (Continuation Stack in Fig. 6).
The runtime engine starts event execution by copying the
event object (event data) and event method (event han-
dler) to the continuation stack. It is worth mentioning
that RewindingVM reduces the event handling to a single-
producer-single-consumer problem, which eliminates the race
conditions on the event buffer. During execution, the runtime
engine pops a method from the continuation stack and runs
this method on the flow object. Control passes to the method,
which can modify the objects.

Undo-Log and Memory Consistency: The undo-log mecha-
nism is activated when modifying objects to preserve memory
consistency. The modifications on the objects are done only
by calling primitive functions. Every primitive function calls
the runtime engine’s log function before modifying an object.
The object memory comprises blocks called pages. The pro-
grammer, for efficiency, may configure the page sizes of the
object memory. The log function copies the original page to
undo-log memory before any modification on that page. When
RewindingVM reboots after a power failure, it copies all the
logged pages (including the pages of runtime data) into their
corresponding pages in the object memory and continues the
program. This mechanism ensures the consistency of the object
memory by eliminating partial modifications.

Forward Progress and Execution Flow: The method being
executed can push other methods to the continuation stack.
The method execution finally returns an object and gives the
control back to the runtime engine. The runtime engine saves
the returned object as a flow object in the runtime data region
of the object memory. The runtime atomically clears the undo-
log memory as the last operation (i.e., commit operation). In
this way, the runtime keeps memory consistent and guarantees
the forward progress of the program.

I/O Handling: The PureLANG compiler already splits the
program code blocks with I/O primitive functions into three
sections, as described in Section III-A. Since this strat-
egy ensures the atomic execution of I/O operations, the
RewindingVM does not treat I/O operations in a specific way.

RewindingVM Compiler Optimizations: By default,
RewindingVM executes one basic block in an execution
cycle, which might be composed of several primitive func-
tions. We implemented two compiler optimizations for
RewindingVM: 1) merging more basic building blocks and
2) some loop optimizations to reduce PureVM overheads
such as repetitive undo-logging (i.e., page copy) operations.
With block optimizations, PureVM can execute multiple
basic blocks in one execution cycle to reduce the persisting
overhead. With loop optimizations, PureVM can execute
an anonymous function multiple times and pack more loop
execution into one execution cycle without repeating undo-
logging operations. Programmers can modify the application
configuration file to enable optimizations and indicate the
maximum number of iterations to bypass PureVM logging
operations within loops.

1) Example RewindingVM Execution: Fig. 6 shows how
RewindingVM handles the control event described in
Fig. 5. In the first step, the interrupt service routine adds the
address of the control method to the event queue along with
the sensed temperature value (which is a floating-point value
of 22.0). In the second step, the VM copies the event from
the event queue to the object memory (depicted as control and
22.0 in the continuation stack) and sets the runtime data of the
flow-in object and stack pointer (depicted as flow0 and stack
pointer0). flow0 points the active object (i.e., {22.0}), which is
the flow-in object for the function at the top of the continua-
tion stack (i.e., control pointed by stack pointer0). In the lower
right corner of Fig. 6, a part of the compiler-generated code
is presented. The compiler splits the control method into
primitive functions and then recomposes into its basic blocks.
As can be seen from the figure, the recomposed version of
the ifElse method (line 10 in Fig. 5) is fragmented into
two continuations that represent apply and select primi-
tives. In the third step, the VM removes the first method from
the continuation stack (control function in the lower right
corner of Fig. 6) and runs it. Since this process updates the
runtime data and the stack of the nonvolatile memory, VM
copies the original values of page1 and page2 to undo memory

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

DURMAZ et al.: VIRTUALIZING INTERMITTENT COMPUTING 20875

before the update. It is worth mentioning that the page0 is not
logged because there is no modification on any global vari-
able in that particular execution period. The fourth step in the
figure shows that the computer restarts after a power failure.
In the fifth step, the VM calls the undo function because it
detects that the undo memory is not empty. It brings the non-
volatile object memory to the last consistent state by copying
page1 and page2 from log memory to main memory and then
removing the pages from the log atomically. Then, in step 6,
the method on the stack runs, as described in step 3. In the
seventh step, the undo memory is cleared by committing it.
The forward progress of the computation is ensured by exe-
cuting the operations vm_consume, vm_commit, and undo
atomically. In the next steps (not shown in the figure), the
remaining methods in the continuation stack execute. They
pass the returned flow objects to the next methods till the
continuation stack becomes empty.

The logging mechanism provides a messaging environment
between the power and execution cycles. If the log is not
empty when the power cycle starts, undo function puts the
computation into the last consistent state, and the computing
cycle restarts at that point. The computing cycle logs the origi-
nal pages before updating them and then operates on the main
memory. Clearing the logs with the commit command indi-
cates that the main memory has reached a consistent point,
and there is no need for undo operation.

B. Other PureVM Implementations

We also implemented two different PureVM versions,
named JustInTimeVM and TestVM. JustInTimeVM does not
contain an undo log memory and requires hardware support
to capture an interrupt when the voltage value on the capaci-
tor crosses the lower threshold voltage. This interrupt persists
the computational state in nonvolatile memory and puts the
runtime into sleep mode to stop computation. This strategy
prevents memory inconsistencies without the need for an undo
log. JustInTimeVM’s overhead is lower than RewindingVM’s
since JustInTimeVM does not include page copy operations
between log memory and object memory. We implemented
TestVM to test any PureLANG program on a personal com-
puter with continuous power. This implementation allows us
to test the correctness of the program logic without loading
the code on a microcontroller.

V. EVALUATION

We evaluated our PureVM implementations considering
three compute-intensive applications cuckoo filter (CF), activ-
ity recognition (AR), and bit count (BC). These applications
are used as the de facto benchmarks by most of the earlier stud-
ies on intermittently powered devices [4]–[6], [16]. CF stores
and reads an input data stream using a CF with 128 entries
and searches the inserted values. AR classifies accelerometer
data, computing the mean and standard deviation of a window
of accelerometer readings to train a nearest-neighbor model to
detect different movements. We used a window size of three
and read 128 samples from each class (shaking or station-
ary) in the training phase. BC counts the number of 1 s in a

Fig. 7. Normalized execution times of AR, CF, and BC benchmarks with
InK, RewindingVM, and JustInTimeVM under continuous power.

Fig. 8. Normalized execution times of AR, CF, and BC benchmarks with
InK, RewindingVM, and JustInTimeVM under RF energy harvesting scenario.

bitstream with seven different methods that are executed 100
times each.

We compiled these applications using the RewindingVM
and JustInTimeVM compilers and executed them on the
MSP430FR5994 evaluation board [31]. To power MSP430
evaluation boards intermittently, we used Powercast TX91501-
3W transmitter [32], which emits radio-frequency (RF) signals
at 915-MHz center frequency. P2110-EVB receiver, connected
to our MSP430FR5994 evaluation board, harvests energy from
these RF signals. We placed the P2110-EVB receiver at a dis-
tance of 60 cm from the RF transmitter. We used the 220-mF
capacitor mounted on the MSP430FR5994 board. In this setup,
the transmitted energy was quite stable. The harvested power
from the transmitter was approximately 7.9 mW. The capacitor
charging time was approximately 11 s.

A. Execution Time Overhead

We evaluated the performance of PureVM implementations
of the benchmarks on harvested energy and continuous power
by considering their execution times. For comparison, we used
their InK [4] implementations since InK is one of the de facto
task-based systems for intermittent computing. We directly
used InK-based implementations of the benchmarks (CF, AR,
and BC) from the InK repository [33]. Since the tasks have
fixed sizes in InK, they may exceed the energy buffer of the
device, or they may perform inefficiently due to frequent task
transitions (causing redo logging of all shared variables to pre-
serve memory consistency). To recalibrate the size of the tasks,
the programmer must recompose all tasks for the new device.
This way of programming limits the code portability.

Figs. 7 and 8 show the normalized execution times of
the benchmarks with InK and PureVM (RewindingVM,
RewindingVM optimized, JustInTimeVM, and JustInTimeVM
optimized) on continuous power and intermittent execu-
tion on RF-power. The compiled code of RewindingVM
and JustInTimeVM can run on the devices with a mini-
mal energy buffer because the compiler recomposes primitive

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

20876 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

TABLE II
NORMALIZED MAXIMUM BLOCK SIZES (I.E., EXECUTION TIME) OF THE

APPLICATIONS WITH RESPECT TO THE AVERAGE EXECUTION

TIME OF ADD PRIMITIVE FUNCTION

functions regarding basic blocks. Recomposing the code into
its basic blocks leads to small continuations and conse-
quently more (continuation) stack operations in RewindingVM
and JustInTimeVM, and more undo-logging operations in
RewindingVM. Optimized versions of the applications are
composed of continuations with more operations. Therefore,
these applications run more efficiently compared to InK apps.
We applied the loop optimizations to all loops and branch
optimizations to some branch method invocations in these
applications.

Table II shows the normalized block sizes in the applica-
tions with respect to the execution time of the add primitive
function in PureVM. In other words, it shows how many prim-
itive functions (on average) fit within these blocks. It is worth
mentioning that there is an almost linear relationship between
execution time and energy cost for a block that does not con-
tain any IO operation. As indicated in Table II, after compiler
optimizations, the block size of AR is almost three times
greater than that of CF. The reason is that loop optimization
is more effective in AR since it has more loops, which can
be combined to form bigger blocks. Therefore, the compiler
could pack more loop execution into one execution cycle.

B. Different Capacitor Sizes

As justified by Table II, PureLANG compiler can auto-
matically generate intermittent programs with different block
sizes without programmer intervention. This feature ensures
the platform independence of the developed applications since
programs do not need to be refactored for each capacitor
size. Contrarily, task-based implementations require a manual
task decomposition for each platform, which makes programs
capacitor size, and in turn, hardware dependent.

To further demonstrate how PureLANG code is portable
across different capacitor sizes, we ran our applications with-
out using all the energy in the capacitor in the MSP430FR5994
board. We emulated different capacitor sizes by triggering
an interrupt when the capacitor voltage reaches the threshold
value and running an empty loop runs until brownout. First,
we reduced the usable capacitance value by about 6.4 times.
In this case, the optimized versions of AR code encountered
nontermination while nonoptimized versions of AR could still
terminate. Similarly, optimized CF codes could not terminate
when reducing the usable capacitance by about 12.8 times.
This shows that even different applications have different min-
imum capacitor size requirements. However, nonoptimized
versions in PureVM always terminate. Therefore, the program-
mer can compromise between the compiler optimizations and
capacitor size.

Fig. 9. RewindingVM overhead, split per operation.

Fig. 10. JustInTimeVM overhead, split per operation.

TABLE III
MEMORY CONSUMPTION FOR THREE BENCHMARK APPLICATIONS

WRITTEN IN INK AND PUREVM

C. PureVM Point-to-Point Overheads

Figs. 9 and 10 show the useful work and overheads (i.e.,
undo-logging and stack operations) of corresponding runtimes
on continuous power. RewindingVM and JustInTimeVM use
a stack to run the continuations. When there is more branch-
ing in the program, the continuation stack operation creates
more overhead because RewindingVM and JustInTimeVM run
the basic blocks in one cycle, which means every branch
needs a continuation stack operation. In BC, the overhead
of stack manipulation is higher due to many branch opera-
tions, which also causes the worst performance compared to
other benchmarks. On the other hand, loop optimizations in
BC had the most impact on the performance compared to other
benchmarks, increasing the performance by a factor of 10.

Before modifying a page that has not been logged before,
the undo-logging mechanism is triggered, which introduces
page search and page copy overheads. Since the log memory
size is small for the benchmarks, we chose a sequential page
search in the log memory. Apparently, the page size affects
the undo-logging performance. The virtual machine config-
uration file of RewindingVM and JustInTimeVM contains a
page size setting. The page size of 32 and 64 bytes gave the
best performance in these applications.

D. PureVM Memory Overheads

Table III shows the memory overheads of InK and PureVM
implementations. Since primitive functions are translated into
C codes, PureVM programs have larger code sizes than InK
programs. InK uses global shared variables for communica-
tion among functions, and hence it has larger data memory

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

DURMAZ et al.: VIRTUALIZING INTERMITTENT COMPUTING 20877

Fig. 11. Our testbed deployment used to evaluate our HVAC application.

than PureVM. The programmer configures the data memory of
RewindingVM and JustInTimeVM via the configuration file.
The stack size required by virtual machines contributes to their
data memory requirements. The code size increase is the cost
which PureVM implementations pay for their performance and
platform independence. However, overall results show that the
memory requirement of PureVM is comparable with InK’s
memory requirement.

E. Case Study: Heating, Ventilation, and Air Conditioning
Controller

As a case study to demonstrate the applicability of PureVM,
we developed an air condition controller for home automa-
tion (Fig. 11). The goal is to get the room temperature
frequently enough and send a message to home automation
to keep the room temperature in the ideal temperature range.
The application uses the PureVM event mechanism to reduce
energy consumption as much as possible: after controlling the
room temperature, the application switches to sleep mode. A
reboot from a power failure or a timer interrupt (with 30-s
intervals) triggers the program, which estimates the room tem-
perature using an analog–digital converter configured to the
internal temperature sensor of the microcontroller. If the room
temperature is not ideal, the application starts asynchronous
communication via Nordic nRF52832 [34] (which supports
BLE) using interrupts over the serial peripheral interface. We
ran this application for 3 h. We observed that the tempera-
ture of the environment was measured 294 times, and 22 BLE
advertisement messages were sent to the heating, ventilation,
and air conditioning (HVAC) system. During the entire run,
there were 18 power failures and recovery. It is worth indicat-
ing that during our experiments, nRF42832 was intermittently
powered since it was powered by the MSP430FR5994 devel-
opment kit through the 0.22 F capacitor on the board. The BLE
communication was implemented by using nRF42832 driver
(a C library). The SPI messaging between nRF42832 and
PureVM was implemented using PureLANG by events (input
messages for PureVM from nRF42832) and IO primitives
(output messages from PureVM to nRF42832).

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced a new virtual machine
(PureVM) that abstracts a transiently powered computer
and a new continuation-passing-style programming language

(PureLANG) used to develop programs that run on PureVM.
This two-layer structure provided a loosely coupled architec-
ture that facilitates the development of platform-independent
and reusable event-driven sensor applications. We believe
that this is a significant attempt to virtualize intermittent
computing.

As followup work, we plan to add new language constructs
to PureLANG to handle the expiration of sensor readings.
Due to long charging times after power failures, sensed data
might lose its validity. In this case, the sensor value becomes
useless and can be discarded. While such a requirement is
absent in continuous computing, it exists in intermittent com-
puting [5], [26]. We also plan to port PureVM to different
ultralow-power microcontrollers and introduce more sophisti-
cated compiler optimizations. As of now, PureVM does not
implement any task scheduling mechanism. We leave inte-
grating scheduling mechanisms, e.g., real-time scheduling of
tasks [24], [35], to PureVM as future work.

REFERENCES

[1] J. D. Hester and J. Sorber, “Flicker: Rapid prototyping for the batteryless
Internet-of-Things,” in Proc. 15th ACM Conf. Embedded Netw. Sensor
Syst., 2017, pp. 1–13.

[2] K. S. Yıldırım, R. Carli, and L. Schenato, “Safe distributed control of
wireless power transfer networks,” IEEE Internet Things J., vol. 6, no. 1,
pp. 1267–1275, Feb. 2019.

[3] M. Nardello, H. Desai, D. Brunelli, and B. Lucia, “Camaroptera: A
batteryless long-range remote visual sensing system,” in Proc. 7th Int.
Workshop Energy Harvest. Energy Neutral Sens. Syst., 2019, pp. 8–14.

[4] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “InK: Reactive kernel for tiny Batteryless sensors,”
in Proc. 16th ACM Conf. Embedded Networked Sensor Syst., 2018,
pp. 41–53.

[5] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and
P. Pawełczak, “Time-sensitive intermittent computing meets legacy soft-
ware,” in Proc. 25th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2020, pp. 85–99.

[6] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable inter-
mittent programs,” in Proc. ACM SIGPLAN Int. Conf. Object Orient.
Program. Syst. Lang. Appl. (OOPSLA), 2016, pp. 514–530.

[7] C. Durmaz, K. S. Yildirim, and G. Kardas, “PureMEM: A structured
programming model for transiently powered computers,” in Proc. 34th
ACM/SIGAPP Symp. Appl. Comput., 2019, pp. 1544–1551.

[8] A. Colin and B. Lucia, “Termination checking and task decomposition
for task-based intermittent programs,” in Proc. 27th Int. Conf. Compiler
Construction, 2018, pp. 116–127.

[9] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” in Proc. 36th ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), 2015, pp. 575–585.

[10] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage
architecture for energy-harvesting devices,” in Proc. 23rd Int. Conf.
Archit. Support Program. Lang. Oper. Syst., 2018, pp. 767–781.

[11] E. Ruppel and B. Lucia, “Transactional concurrency control for
intermittent, energy-harvesting computing systems,” in Proc. 40th
ACM SIGPLAN Conf. Program. Lang. Design Implement., 2019,
pp. 1085–1100.

[12] G. J. Sussman and G. L. Steele, “SCHEME: A interpreter for
extended lambda calculus,” High. Order Symb. Comput., vol. 11, no. 4,
pp. 405–439, 1998.

[13] L. T. van Binsbergen, E. Scott, and A. Johnstone, “Purely functional
GLL parsing,” J. Comput. Lang., vol. 58, no. 1, pp. 1–17, 2020.

[14] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe effi-
cient intermittent computing,” in Proc. 13th USENIX Symp. Oper. Syst.
Design Implement. (OSDI), 2018, pp. 129–144.

[15] B. Ransford and B. Lucia, “Nonvolatile memory is a broken time
machine,” in Proc. Workshop Memory Syst. Perform. Correctness, 2014,
pp. 1–3.

[16] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution with-
out checkpoints,” in Proc. ACM Program. Lang., vol. 1, Oct. 2017,
pp. 1–96.

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

20878 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

[17] M. Surbatovich, L. Jia, and B. Lucia, “I/O dependent idempotence bugs
in intermittent systems,” in Proc. ACM Program. Lang., vol. 3, 2019,
pp. 1–31.

[18] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on RFID-scale devices,” in Proc. 16th Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS XVI), 2011,
pp. 159–170.

[19] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan,
“QUICKRECALL: A HW/SW approach for computing across power
cycles in transiently powered computers,” ACM J. Emerg. Technol.
Comput. Syst., vol. 12, no. 1, pp. 1–8, Jul. 2015.

[20] D. Balsamo et al., “Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 12, pp. 1968–1980, Dec. 2016.

[21] J. Zhan, G. V. Merrett, and A. S. Weddell, “Exploring the effect of
energy storage sizing on intermittent computing system performance,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 3,
pp. 492–501, Mar. 2022.

[22] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in Proc. 12th USENIX
Conf. Oper. Syst. Design Implement. (OSDI), Savannah, GA, USA,
Apr. 2016, pp. 17–32.

[23] N. A. Bhatti and L. Mottola, “HarvOS: Efficient code instrumentation
for transiently-powered embedded sensing,” in Proc. 16th ACM/IEEE
Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2017, pp. 209–220.

[24] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic
and reactive intermittent execution,” in Proc. 41st ACM SIGPLAN Conf.
Program. Lang. Design Implement., 2020, pp. 1005–1021.

[25] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems
with just-in-time checkpoints,” in Proc. 40th ACM SIGPLAN Conf.
Program. Lang. Design Implement., 2019, pp. 1101–1116.

[26] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proc. 15th ACM Conf. Embedded Netw.
Sensor Syst., 2017, pp. 1–13.

[27] A. Y. Majid et al., “Dynamic task-based intermittent execution for
energy-harvesting devices,” ACM Trans. Sensor Netw., vol. 16, no. 1,
pp. 1–24, 2020.

[28] E. W. Dijkstra, “Letters to the editor: Go to statement considered
harmful,” Commun. ACM, vol. 11, no. 3, pp. 147–148, 1968.

[29] A. Bakar, A. G. Ross, K. S. Yildirim, and J. Hester, “REHASH: A flex-
ible, developer focused, heuristic adaptation platform for intermittently
powered computing,” Proc. ACM Interact. Mobile Wearable Ubiquitous
Technol., vol. 5, no. 3, pp. 1–42, 2021.

[30] M. Eysholdt and H. Behrens, “XText: Implement your language
faster than the quick and dirty way,” in Proc. ACM Int. Conf.
Companion Object Oriented Program. Syst. Lang. Appl. Companion,
2010, pp. 307–309.

[31] “Texas Instruments. MSP430FR5994 launchpad development kit.” 2021.
[Online]. Available: http://www.ti.com/tool/MSP-EXP430FR5994

[32] “Powercast corp.” 2021. [Online]. Available: https://www.powercastco.
com/products/development-kits/

[33] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and
J. Hester. “TUDSSL/ink.” 2019. [Online]. Available: https://github.com/
tudssl/ink

[34] “Nordic Semiconductor. nRF52832 system-on-chip.” 2021. [Online].
Available: https://www.nordicsemi.com/Products/Low-power-short-
range-wireless/nRF52832

[35] M. Karimi, H. Choi, Y. Wang, Y. Xiang, and H. Kim, “Real-time
task scheduling on intermittently-powered Batteryless devices,” IEEE
Internet Things J., vol. 18, no. 17, pp. 13328–13342, Sep. 2021.

Çağlar Durmaz received the M.Sc. degree in
computer engineering from Dokuz Eylul University,
Izmir, Turkey, in 2006. He is currently pursuing
the Ph.D. degree with the International Computer
Institute, Ege University, Izmir.

He is the Founder of Integra ICT Corporation,
Izmir, Turkey. His research interests include pro-
gramming languages, model-driven engineering,
embedded systems, and intermittent computing.

Kasım Sinan Yıldırım (Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer
engineering from Ege University, Izmir, Turkey, in
2006 and 2012, respectively.

He is currently an Assistant Professor with
the Department of Information Engineering and
Computer Science, University of Trento, Trento,
Italy. His research interests include embedded
systems, intermittent computing, wireless networks,
and distributed algorithms.

Geylani Kardas received the B.Sc. degree in
computer engineering and the M.Sc. and Ph.D.
degrees in information technologies from Ege
University, Izmir, Turkey, in 2001, 2003, and 2008,
respectively.

He is currently an Associate Professor with
the International Computer Institute (ICI),
Ege University, and the Head of the Software
Engineering Research Laboratory, ICI. His research
interests include agent-oriented software engineer-
ing, model-driven engineering, domain-specific

(modeling) languages, and low-code software development. He has authored
or coauthored over 100 peer-reviewed papers in these research areas.

Dr. Kardas is an Associate Editor of the Journal of Computer Languages
(Elsevier).

Authorized licensed use limited to: ULAKBIM UASL - EGE UNIVERSITESI. Downloaded on October 24,2022 at 06:38:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

