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Abstract: The Internet of Things (IoT) is a promising domain and one of the leading technologies used 

in public transportation in recent years. However, in addition to the heterogeneity and high complexity 

problems that are usually observed in the development of IoT systems, the specific needs of public 

transportation domain make the construction of such systems even harder for the public transportation. 

This paper proposes the use of a domain-specific modeling language (DSML), called DSML4PT, to 

facilitate the design and implementation of IoT-based public transportation systems. A metamodel is 

introduced that enables modeling IoT-based applications according to the different viewpoints and leads 

to the model-driven engineering of such applications for different IoT-based public transportation 

platforms. Furthermore, originated from this metamodel, design and implementation of the DSML4PT 

language with including its syntax and semantics definitions are all discussed in this paper. Use of this 

DSML supports both the design of the IoT-based public transportation software graphically and the 

automatic generation of the code required for the implementation. Based on the conducted case study, 

it has been observed that approximately 80% of a public transportation application can be generated 

only with using DSML4PT. 

Keywords: Internet of Things, public transportation, smart cities, model-driven engineering, domain-

specific modeling language 

 

 

Toplu Taşıma İçin Nesnelerin İnterneti Yazılımlarının Modellenmesi  

 
Özet: Nesnelerin İnterneti (IoT) pek çok alanda olduğu gibi son yıllarda toplu taşımada da sıklıkla 

kullanılan teknolojilerin başında gelmektedir. Ancak, IoT sistemlerinin geliştirilmesinde genellikle 

gözlemlenen heterojenlik ve yüksek karmaşıklık sorunlarına ek olarak, toplu taşıma alanının kendine 

özgü ihtiyaçları, toplu taşıma için IoT tabanlı sistemlerin inşasını daha da zorlaştırmaktadır. Bu 

makalede, IoT-tabanlı toplu taşıma sistemlerinin tasarımını ve uygulanmasını kolaylaştırmak için 

DSML4PT adlı alana özgü bir modelleme dilinin (DSML) kullanılması önerilmektedir. IoT-tabanlı 

uygulamaların farklı bakış açılarına göre modellenmesini sağlayan ve bu tür uygulamaların farklı IoT-

tabanlı toplu taşıma platformları için model güdümlü mühendisliğine imkan veren bir üstmodel 

sunulmuştur. Ayrıca, bu üstmodele dayanan DSML4PT dilinin sözdizimi ve anlambilim tanımları da 

dahil olmak üzere tasarımı ve uygulanması bu makalede tartışılmaktadır. Bu DSML'in kullanımı, hem 

IoT tabanlı toplu taşıma yazılımının görsel olarak tasarlanmasını hem de uygulama için gerekli kodun 

otomatik olarak oluşturulmasını destekler. Yürütülen vaka çalışmasına dayanarak, bir toplu taşıma 

uygulamasının yaklaşık %80'inin yalnızca DSML4PT kullanılarak üretilebildiği gözlemlenmiştir. 

Anahtar Kelimeler: Nesnelerin İnterneti, toplu taşıma, akıllı şehirler, model-güdümlü mühendislik, 

alana-özgü modelleme dili
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1. Introduction 

Today, systems such as fare collection, pollution measurement, passenger counting, vehicle system 

management, passenger information, advertisement management, vehicle tracking are used frequently 

in public transportation. These systems can work together or be standalone. Public transportation 

systems can be used in various environments such as buses, subways, trains and trams. In these 

environments, systems are exposed to harsh conditions due to high temperature differences, constant 

vibration, rain, sun and mobility (Evin et al., 2020).  

As being one of the most promising technologies today, the Internet of Things (IoT) is used in many 

domains such as smart cities, public transportation, field monitoring, military, agriculture and 

healthcare. IoT is a structure where things are connected to each other and to the rest of the Internet. 

“Things” are any units that can connect to the Internet and exchange information. In IoT, objects are 

interconnected and can also exchange data (Rayes and Salam, 2019). 

Heterogeneity and complexity of the hardware and software being used cause very important problems 

in the development of IoT-based public transportation systems. There is a wide variety of hardware and 

software in public transportation vehicles and in the cloud/server environment. Each unit in the system 

has its own development environment and settings. Especially the memory and processor power in the 

end devices are very limited (Aydin et al., 2019). Besides, hardware and software are highly 

interdependent. Although it is quite common to develop platform-dependent software in these systems, 

deployment and execution of the software directly on a different platform is challenging, even if the 

same programming language or software development tools are used. Moreover, the differences of 

various IoT systems, mobility issues, working in harsh physical conditions and the use of domain-

specific “System-on-Chip” (SoC), hardware and their varying standards and protocols also make the 

implementation of IoT-based public transportation applications difficult (Arslan and Kardaş, 2021). 

As successfully applied in many other domains (e.g. (Brambilla et al., 2017; Lelandais et al., 2019; 

Mohamed et al., 2021), model-driven engineering (MDE), mostly supported with the use of domain-

specific languages (DSLs) (Kosar et al., 2019; Wasowski and Berger, 2023) and domain-specific 

modeling languages (DSMLs) (Kardas et al., 2023), may also help overcoming the abovementioned 

difficulties of IoT-based public transportation applications and facilitate the system development by 

leveraging the abstraction level during design and generating many components automatically for the 

complete implementation, i.e. software models of the public transformation systems can be 

automatically manipulated and transformed to the executable and deployable artifacts. Hence, in this 

paper, we investigate modeling IoT-based public transportation systems and introduce a DSML, called 

DSML4PT to support MDE of such system. 

DSML4PT language’s syntax is based on a metamodel enabling modeling IoT-based applications 

according to the different viewpoints and leads to the MDE of such applications for different IoT-based 

public transportation platforms. Furthermore, originated from this metamodel, design and 

implementation of the DSML4PT language, including its syntax and semantics definitions, are discussed 

in this paper. Use of this DSML supports both the design of the IoT-based public transportation software 

graphically and the automatic generation of the code required for the implementation. Evaluation of the 

usability of DSML4PT through a case study is also discussed in this paper. 

The remainder of the paper is organized as follows: Section 2 gives the related work. Section 3 discusses 

a metamodel for modeling the public transportation software. Section 4 gives the syntax definition of 

DSML4PT based on the proposed metamodel. Transformational semantics of the language is given in 

Section 5. Section 6 discusses the use and evaluation of DSML4PT and Section 7 concludes the paper. 

2. Related Work 

In this section, firstly, studies proposing MDE for the development of IoT systems are reviewed. In the 

second part, MDE studies specific for IoT-based public transportation systems are discussed. 

2.1. MDE Studies for IoT Applications 

Many researchers find MDE promising and propose modeling approaches, languages and MDE tools 

for overcoming IoT development challenges (Arslan et al., 2023). For instance, Harrand et al. (2016) 
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focused on the fundamental IoT problems such as deployment and heterogeneity and they proposed the 

use of the "Internet of Things Modeling Language" (ThingML). ThingML supports visual modeling 

structures such as state and component diagrams, and modeling IoT applications covering different 

perspectives through a platform-dependent modeling language and from the architectural level to the 

behaviour level of individual devices. Platform dependent code generation such as Arduino, Raspberry 

Pi, Intel Edison and popular programming languages (C/C++, Java, Javascript) are supported in 

ThingML. Recent extensions of ThingML, like AIoTM (Hu et al., 2023), exists for the construction of 

the Artificial Intelligence-based IoT components across different modeling levels for the purposes of 

intelligent sensing and control. Similar to ThingML, the Vorto project (The Vorto project, 2018) led the 

creation of the Vorto DSL which is used to specify manufacturer-independent abstraction layers that 

describe the functions and features of tools at different levels of detail. 

An MDE development framework, named UML4IoT was developed for industrial IoT production 

systems (Thramboulidis and Christoulakis 2016). Based on the well-known Unified Modeling Language 

(UML), IoT components in a production system were modeled in this study. Similarly, MDE 

applications for different IoT devices is being carried out in the industry. For example, a multi-view 

modeling approach was used in (Muthukumar et al., 2019) to perform design and verification of the 

Industrial Internet of Things (IIoT) enabled control in process industries. Use of the proposed MDE and 

IIoT architecture was exemplified for the quadruple tank process, a benchmark problem in control. 

Ahmed et al. (2019) introduced an interoperability architecture for data exchange in the smart gas 

distributed networks based on the MDE projection and transformation concepts. Metamodels and 

models for different abstraction layers of data exchange via smart hubs were described and their use in 

a smart gas distribution grid was discussed. 

COMFIT environment (Faria et al., 2017) presented an application development paradigm based on the 

MDE infrastructure, where an application management and execution module use the cloud interface to 

develop automated IoT applications. The methodology in (Costa et al., 2020), which combined MDE 

and service-oriented architecture (SOA), provided different levels of abstraction in building software 

components of IoT systems. Thus, in IoT, network resources are dynamically allocated using application 

programming interfaces (APIs). An integrated MDE methodology to design and deploy a network of 

things was presented in (Berrouyne et al., 2022). The use of this methodology may provide the 

abstraction of the heterogeneous things and the control of these things as well as a mechanism to define 

constraints on the network. With this methodology, it is also possible to process the IoT models and 

generate the network artifacts by using a code generator, based on model transformation. 

MDE has also been adopted for the Wireless Sensor Networks (WSN) especially considering the system 

implementation on the operating systems such as TinyOS and Contiki. Studies like (Marah et al., 2021; 

Vorapojpisut, 2018) introduced MDE techniques for graphical modeling of hardware modules, sensors, 

components and WSN configurations that also enables code generation for WSN programming 

languages such as nesC. 

To cope with the challenges of IoT prototyping which are originated from cross-domain interoperability, 

reusability and customization cost and expertise requirement, Xiao et al. (2019) proposed a model-

driven service composition architecture based on the finite-state machine descriptions. Model-based 

simulation of realistic smart home scenarios was discussed in (Kölsch, 2020) where IoT devices were 

used in the implementation of the related simulation model. The model was separated into three levels 

covering the simulation of core components of the house, events in the house and calculation of the 

power consumption of the house. A model-based design approach was applied in (Kotronis et al., 2018) 

for healthcare to create the structure and the interconnection of an IoT-based system-of-systems for the 

remote monitoring of elderly subjects. With MDE, it is also possible to formalize the mathematical 

relationships and validation expressions among the components and operational requirements of the 

system. 

Although the above-mentioned studies provide various noteworthy approaches for modeling IoT 

systems, they do not address the problems of modeling IoT-based public transportation systems and 

only provide MDE methods and/or tools for the domains other than the public transportation. 
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2.2. MDE Studies for IoT-based Intelligent Transportation and Public Transportation 

In the domain of intelligent transportation, which may have co-working spaces with public 

transportation, only a very limited number of studies exist for proposing modeling or discussing the case 

studies of applying MDE for IoT-based intelligent and or public transportation systems. 

IADev framework (Rafique, 2020) enabled SOA-based IoT development according to model-driven 

development principles. The conceptual models of IADev lead the development process, i.e. modeling 

in IADev allows for IoT service orchestration by also providing transformation methods and automated 

platform-specific code development. The case study of this general-purpose framework was made over 

an intelligent transportation system. More emphasis was placed on traffic management and road safety. 

Similarly, a DSL, called SimulateIoT-Mobile, an extension of SimulateIoT that includes support for 

simulating IoT systems with mobile nodes was introduced in (Barriga et al., 2023). Although the main 

domain of the proposed DSL is mobile devices rather than the public transportation overall, an IoT 

simulation of personal mobility devices (PMD) based on public bicycles was also considered as one of 

the examples in this study.  

Hause et al. (2018) stated that IoT is very important in public transportation and IoT system development 

can be facilitated with MDE approaches. Hence, they introduced an MDE approach for the development 

of IoT systems in smart cities. How to model both the whole system for components such as traffic 

lights, sensors, and the management of complexity and synchronization between the systems was 

discussed. 

Iovino et al. (2019) provided a case study of an integrated card-based access control system authorizing 

people based on Near Field Communication (NFC) tags. An MDE approach was proposed that supports 

semi-automatic code generation in an IoT infrastructure. A solution was given for the pass authorization 

field with NFC. The NFC system used here is only considered as the system to be used for access at the 

doors. In fact, NFC systems can also be used for fare collection, which is one of the public transportation 

systems. However, that was not considered in (Iovino et al., 2019). With the use of NFC in public 

transportation, fare collection is provided together with special hardware structures, called SAM 

modules. Thus, the fare collection process becomes secure. In addition, NFC payment is only a small 

part of the entire fare collection system. 

The ENACT DevOps (EDO) (ENACT Project, 2018) framework aimed to ensure the continuity of 

DevOps service quality and the best implementation of the development lifecycle of IoT systems, and 

hence it defined the necessary components in this direction. In addition, the difficulties experienced 

when using the ENACT tool in a testbed environment were discussed (ENACT Project, 2018). These 

difficulties mainly arose from the heterogeneity inside IoT platforms. Offering a DevOps approach, 

ENACT also examined similar IoT problems not only in terms of development but also in field 

operations. The test bed in this study can be used in intelligent transportation systems, especially for 

train control.  

Vitruvius (Fernandez et al., 2014) is a platform where users without programming knowledge can design 

and quickly implement rich Web applications based on real-time data consumption from interconnected 

vehicles and sensors. A system that provides an MDE development environment for this platform, which 

can be installed on vehicles, was realized. The general aim is to design a system with MDE, which will 

collect and monitor sensor information such as CO2 amount, speed, location information, regardless of 

what type of vehicle (e.g., automobile, truck).  

Mazzini et al. (2015) presented an MDE methodology to provide effective and efficient protection 

mechanisms that include real-time, non-functional features such as security and performance to be used 

in IoT system components. Although, it was mentioned that this new methodology can also be applied 

to the issues of verifying data distribution in Intelligent Transport Systems, there is no discussion of how 

the modeling capabilities exactly supported eliminating these issues and uncertainties. 

Our work contributes to these efforts by introducing the first full-fledged modeling language for the 

MDE of IoT-based public transportation systems according to the different modeling viewpoints 

supporting high mobility, standards and protocols specific for public transportation, various SoC and 

hardware components being used as well as different underlying operating systems. Both all-embracing 
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metamodel of the entities of the IoT-based public transportation systems and automatic transformation 

of the model instances of this metamodel brought by the use of this new language lead to the design and 

implementation of wide range applications that will be deployed on different IoT-based public 

transportation platforms in contrast to the above mentioned studies which mostly consider specific case 

studies of public transportation, limit the implementation platforms and rarely support the automatic 

generation of the executables for the modeled systems. 

3. A Metamodel for Public Transportation Software 

The abstract syntax is used in DSMLs to describe concepts and their relationships in a domain. 

Additionally, abstract syntax is used to describe how the vocabulary of concepts provided by the 

language can be combined to create models or programs (Wasowski and Berger, 2023). From the MDE 

perspective, an abstract syntax is usually provided by a metamodel definition and metamodels define 

what models should look like (Kühne, 2022). Hence, the abstract syntax of our DSML (DSML4PT) for 

IoT-based public transportation applications is also built with a metamodel. This section introduces this 

metamodel. 

The metamodel, which constitutes the abstract syntax of DSML4PT, was developed in this study by 

considering the connections and main elements of the public transportation systems including IoT 

technologies. Related metamodel entities and their relations are derived based on examining various 

public transportation specifications (such as (ITxPT, 2017; ITS Standardization, 2021; ISO 24014-

1:2015, 2015)) and requirements of developing IoT software for public transportation systems discussed 

in (Arslan and Kardaş, 2021). The metamodel is divided into three different viewpoints. These are 

named IoT Core, Public Transport, and Service/Cloud. These viewpoints are based on the relationships 

of the key units in public transportation IoT systems. The metamodel is encoded with Eclipse Ecore 

(The Eclipse Foundation, 2015) and hence it is possible to integrate the metamodel with various 

MDEtools based on Eclipse Modeling Framework (EMF). 

Grouping the units of the mass transit IoT domain according to different viewpoints in our metamodel 

does not only facilitate the development of the DSML4PT's syntax, but also enables this syntax to be 

more easily interpreted and used more effectively by public transportation IoT developers. Updating one 

of the related viewpoints is much easier than using a single viewpoint and working on a large 

supermodel. In any DSML4PT viewpoint, the complexity of removing and replacing elements or 

relations is reduced. However, with the multiple viewpoint structure, it is also possible for developers 

to extend the existing syntax in case of some special needs in the future. 

The viewpoints developed for DSML4PT are discussed in the following subsections with their Ecore 

diagram representations. In each diagram of the viewpoints, metamodel entities (elements, units) are 

indicated by yellow rectangles. In addition, elements having the characters “<<” and “>>” prior to their 

names show relationships with other viewpoints. These elements are common elements between 

viewpoints, i.e. they exist separately in different viewpoints. For example, in Figure 1 where the IoT 

Core viewpoint is found, the Architecture entity, which is the common element of all viewpoints, is used 

with <<Public Transport Viewpoint>> and <<Service/Cloud Viewpoint>>. Elements and associations 

covered in each viewpoint are indicated in the text with italics. 

3.1. IoT Core Viewpoint 

The IoT Core viewpoint includes elements that define a generic IoT device, regardless of the 

characteristics of public transportation devices. These devices are generally IoT devices with 

microcontrollers such as STM32 and ArduinoUno that do not contain an operating system. They do not 

have units such as window systems or protocols that are specific to the operating system. When the 

studies in the literature are examined, there are examples of metamodels that focus on general use 

platforms such as Raspberry Pi and Arduino (Iovino et al., 2019; Alulema et al., 2017; Asici et al., 2019). 

However, platforms that are thought to be similar are actually can be quite different. Raspberry Pi 

devices are actually devices that contain an operating system. When it is possible to work in detail, it is 

seen that these development platforms actually have features such as window system, file and network 

manipulation, which include operating system features. Therefore, in the IoT Core viewpoint, there is 

no support for devices with microprocessors. In order to provide more comprehensive support, the 

support of microprocessor devices has been taken to the Public Transport viewpoint. There is no 
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example of this structure as developed in our study. Microprocessor and microcontroller structures are 

separated for the first time at the metamodel level. 

There are also examples of IoT metamodels in the WSN domain (Marah et al., 2021; Asici et al., 2019). 

However, in these examples, studies can only be carried out on special hardware platforms where it is 

possible to use operating systems such as TinyOS or Contiki. The metamodels in these studies are 

different from the models that can be used in the studies in the general IoT domain, and their common 

usage is very difficult. In (Dautov and Song, 2019), the fleet management supermodel of the system 

consisting of IoT devices is presented. There is no compatibility with the target of our study, as the focus 

is not on how the IoT system works, but on how the fleet is managed. With the use of the metamodel 

found in (Hassine et al., 2017), the system is mostly created with elements such as the IoT device itself 

and the human user. However, with such an approach, the IoT system can be modeled as a general view, 

and human and device interaction can be shown. This approach is incomplete, and our metamodel 

focuses on the interactions of the working units of the system, where the software code can be generated, 

completely different from this structure. 

Figure 1 shows the IoT Core viewpoint of our metamodel. The Architecture element of the metamodel 

is the basic node from which the whole system is derived. From this node, other viewpoints of the system 

can also be generated. The Architecture element is in a has-a relationship with other elements derived 

from it. The Controller element determines the platform type of our microcontroller system. The type 

of microcontroller is selected with the TypeController variable. The communication interface type and 

parameters of the system are set with the Communication element derived from the Controller element. 

The TypeCommunication variable provides a selection of interfaces such as Wifi and Bluetooth. The 

programming language selection is provided by the Language item. The language in which the 

programming will be made is selected with the TypeLanguage variable. There are Input or Output 

elements derived from the Port abstract element to ensure the use of the sensors and actuators to be 

used. Sensor elements are derived from Input elements, and Actuator elements are derived from Output 

elements. Analog or digital type ports can be selected from the TypePort variable. Sensor types such as 

temperature and humidity are selected from the TypeSensor variable. TypeActuator variable includes 

actuators such as buzzers and speakers. 

3.2. Public Transport Viewpoint 

Public Transport viewpoint includes elements that describe the unique features of a public transportation 

system. In this viewpoint, the difference between public transportation devices from general IoT devices 

is defined at the metamodel level. It contains elements and relationships that enable the modeling of the 

domain. No specific metamodel for public transportation has been encountered in any source in the 

literature. Starting from the processor level, this metamodel has great differences such as supporting 

special hardware, standards and protocols created for general use metamodels. Microprocessor families 

working with the operating system are reflected in the metamodel in great detail from this point of view. 

Figure 2 shows the entities and their relationships in our metamodel’s Public Transport viewpoint. 

Architecture element common with other perspectives is the starting point of the Public Transport 

viewpoint. The SoC element provides the definition of the SoC platform to be used in the public 

transportation IoT system. Platforms such as iMX, Sitara, Raspberry Pi can be selected with the TypeSoC 

variable. With the OperatingSystem element derived from the SoC element, the operating system to be 

used in the public transportation IoT device is added. With the TypeOperatingSystem variable, operating 

systems such as Linux and derivative operating systems as well as Andorid Things can be selected. The 

window system to be used in IoT devices is made with the TypeWindowSystem variable in the 

WindowSystem element. In this variable, there are window systems such as X and Wayland. The 

language of the program to be used is set with the Language element derived from the WindowSystem 

element. The TypeLanguage variable enables the programming language to be selected among 

languages such as C, C++, Java, Python. SpecialHardware is the item that enables the support of public 

transportation specific hardware. With the TypeSpecialHardware variable, hardware such as SAM, SIM, 

which is thought to be used, is selected. Setting of standards and protocols specific to public 

transportation is done with Standards and Protocols items. With TypeStandards and TypeProtocols 

variables, it is possible to select public transportation specific standards such as ITxPT and protocols 
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such as CCTalk. With the Communication element derived from the SoC element, the communication 

interface type and parameters of the system are determined. TypeCommunication variable enables the 

use of interfaces such as Wifi and Bluetooth. Similar to the IoT Core viewpoint, Input or Output 

elements derived from the Port abstract element are used to enable the use of sensors and actuators. 

Sensor elements are derived from Input elements, and Actuator elements are derived from Output 

elements. Analog or digital type ports are selected from the TypePort variable.  

 

Figure 1. IoT Core viewpoint. 

3.3. Service Cloud Viewpoint 

In this viewpoint, elements and relationships are defined for service and cloud systems in public 

transportation IoT systems. The metamodels in general IoT systems do not contain structures for service 

and cloud mass transit. They are specialized for using the services of simple microcontrollers. In this 

perspective, there are smart phone and computer application elements that provide the monitoring of 

public transportation IoT devices. When the metamodels in the literature are examined, there are no 

studies that customize the service and cloud as in this study. In general, the service and cloud elements 

are included in the metamodels as a whole element (Sosa-Reyna et al., 2018; Alulema et al., 2017) or in 

SOA studies, the metamodels only represent service and cloud architectures (Costa et al., 2020; Cai et 

al., 2018; Betancourt et al., 2020). Hence, our metamodel contributes to these ongoing service and cloud 

metamodeling efforts by considering the service and cloud space from the perspectives of IoT systems 

separately.  
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Figure 2. Public Transport viewpoint. 

As with other viewpoints, the Service/Cloud view starts with the Architecture element (see Figure 3). 

Service and cloud configurations are made with the ServiceApp and Cloud elements derived from the 

Service abstract element. With the TypeService variable, the service type can be set in types such as 

REST and SOAP. With the TypeCloud variable, cloud type can be selected such as Azure or Firebase. 

The item for which the smartphone application is determined is the SmartPhone item. With the 

TypeSmartPhone variable, the type of the application is preferred as Android or iOS. The monitoring 

application in the computer program is set using the MonitorApp item. The language of the computer 

application is determined by the TypeMonitorApp variable. 

4. Concrete Syntax for Public Transportation Modeling 

Concrete syntax provides a mapping between concepts in abstract syntax and their representation on 

instance models. When the most basic function is considered, concrete syntax can be defined as a set of 

signs that facilitate the presentation and construction of the language. This section describes the 

graphical concrete syntax of DSML4PT that maps abstract syntax elements to their graphical 

representations.  

In this study, the Sirius tool (The Sirius Project, 2023) based on Eclipse EMF and GMF technologies 

was preferred in the derivation of the concrete syntax. Sirius is an Eclipse project that allows to easily 
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create a graphical modeling environment using Eclipse modeling technologies. The Sirius tool was 

developed by Obeo and Thales to create a generic framework for MDE that can be easily adapted to 

specific needs. Complex architectures can be developed more easily in certain areas. A modeling 

environment built with Sirius consists of Eclipse editors that allow users to create, edit, and view EMF 

models. Editors are defined by a model that describes the entire structure of the modeling environment, 

its behavior, and all printing and navigation tools. This description of a Sirius modeling environment is 

dynamically interpreted within the Eclipse IDE. To support the specific requirement for customization, 

this tool can be extended in many ways. 

 

Figure 3. Service/Cloud viewpoint. 

In order to develop concrete syntax, firstly, graphical representations for abstract syntax meta elements 

were prepared in this study. The Sirius tool is used to connect the nodes to the field concepts in the 

Ecore file. Tables 1, 2, and 3 provide graphical representations of all identified viewpoints of the 

DSML4PT. The left columns in the tables contain the names of the meta elements in the abstract syntax, 

while the right columns show the symbols in the DSML4DT syntax. 

Ecore models are created in Sirius, so elements and their relationships can be easily seen in visual 

diagrams. Ecore models are used in the development process. During this process, symbols are set for 

both palettes and shapes. Icon geometry is explained and some constraint checks are considered. The 

designed system is a graphical editor where public transportation IoT developers can design models for 

each of the required viewpoints that match the DSML4PT concrete syntax. 

DSML4PT language’s syntax implements some restrictions/checks during the user modeling process. 

Some of these controls come from the metamodel and some from the UI tool. These controls are 

discussed in the following two subsections, "Model Constraints" and "Graphical Tools", respectively. 

Rules for validating the public transportation models are discussed in the third sub-section.  
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Table 1. Concrete syntax concepts and icons for the IoT Core viewpoint 

Concept Icon Concept Icon 

Architecture 

 

Output 

 

Controller 

 

Input 

 

Communication 

 

Language 

 
Port 

 

Actuator 

 

Sensor 

 

  

Table 2. Concrete syntax concepts and icons for the Public Transport viewpoint 

Concept Icon Concept Icon 

Architecture 

 

Standards 

 
Soc 

 

Protocols 

 
Communication 

 

Port 

 

SpecialHardware 

 

Sensor 

 
OperatingSystem 

 

Output 

 

WindowSystem 

 

Input 

 
Language 

 

Actuator 

 

Table 3. Concrete syntax concepts and icons for the Service/Cloud viewpoint 

Concept Icon Concept Icon 

Architecture 

 

Cloud 

 
Service 

 

SmartPhone 

 

ServiceApp 

 

MonitorApp 

 
 

4.1. Model Constraints 

Constraints for DSML4PT Ecore models are provided for instance models from all viewpoints. These 

restrictions can be classified as follows: 

Splitting constraints: The compositional relationship between meta-elements in Ecore is a relationship 

from which another element is produced. For example, Communication and OperatingSystem elements 

can be generated from the SoC element in the IoT Core perspective. However, this does not happen for 

items where this relationship cannot be found. 
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Restrictions on the relationship count: The number of relationships between elements in the instance 

model is controlled based on the one-to-one, one-to-many, many-to-many relationships in Ecore. For 

example, only one OperatingSystem element can be derived from the SoC element. However, since the 

number of inputs and outputs can be higher, a large number of Port elements can be derived. 

Relationship source and target constraint: The direction of the relationship defines the source and target 

of the relationship. This restriction is defined at the Ecore level. For example, if the relationship between 

SoC and Communication is reversed, this structure cannot be created in the model. 

4.2. Graphical Tools 

In addition to the metamodel constraints, DSML4PT includes some editorial constraints that assist the 

user in the design while creating the system models. These restrictions are listed below: 

Switching between viewpoints: This restriction establishes the unity of the system by switching between 

editors of different viewpoints. This structure provides a step-by-step creation of the system. The tool is 

quite flexible when creating diagram files. In the case of a user request, it is possible to create each of 

the viewpoint diagrams separately. For example, the user can design a Public Transport diagram without 

designing the IoT Core diagram. 

Combination: This feature provides system unification for all elements. Editor diagrams are based on 

the metamodel’s viewpoints. On the other hand, the system model should be considered as a whole 

combining all instances of the viewpoints. Therefore, any identified element is saved in a list for unique 

use during the entire modeling process. This is achieved by having a tree structure showing all the 

elements that can be included in any point of the view diagram. An example is a Communication element 

created in the IoT Core viewpoint editor. Since this Communication element should be used in the other 

viewpoints, e.g. Public Transport viewpoint, it is automatically added into these viewpoint models too. 

Elements can be used in diagrams by dragging and dropping from palettes as needed. 

Relationship-element integrity: According to this constraint, removing an element created in any sample 

model will remove all relationships from the model. This ensures that the integrity of the entire model 

is maintained and that the model is consistent after these changes. The main constraints are the number 

of relationships, the source and target relationships, and the integrity of the relationship-element 

constraints.  

4.3. Validation Rules 

In addition to the restrictions and features described above, it is also possible to define validation rules 

for DSML4PT language’s semantics. For example, if some elements must be present in a DSML4PT 

instance model, validations can be added for them. Tables 4, 5 and 6 list a total of 61 validation rules 

defined for this purpose. In the tables, the Element title shows which element the rule is associated with. 

The Type header indicates an "Error" that must be fixed or a "Warning" that needs attention. Error 

messages are displayed in the integrated development environment of the DSML4PT language 

according to these rules when the "Validate Diagram" operation is performed on DSML4PT models 

prepared according to the viewpoints. 

5. Model-to-Text Transformation for Code Generation 

Model-to-Text (M2T) transformation rules were applied automatically onto the DSML4PT instance 

models to generate executable code for the public transportation software. These rules, in other words, 

allow the creation of the translational semantics of our language. To support the interpretation of 

DSML4PT models, M2T transformation rules were written by using (Acceleo, 2018) in this study. 

Acceleo is a pragmatic implementation of the OMG MOF M2T Language (MTL) standard. It also 

provides an Eclipse plugin where Acceleo transformations can be written, parsed, checked and executed 

directly inside the Eclipse environment. Some examples of Acceleo M2T transformation rules written 

for DSML4PT are discussed in Section 6.  

It is worth indicating that the abovementioned M2T rules are applied at runtime on the public 

transportation system models conforming to the DSML4PT syntax and hence the code and/or files 

required for the system implementation are generated automatically. A user does not need to know the 

whole generation process including the details and the execution mechanism of the transformation rules. 
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The whole code generation process is abstract and there is no need to any human intervention. All code 

generation for languages such as C and Java that will be needed is in the Eclipse tool. The syntax rules 

of the batch overflow construct are also applied throughout the entire code generation phase. 

Table 4. Validation rules for DSML4PT IoT Core viewpoint 

Rule Element Type Notification 

IoTCore_1 Architecture Error Element name should not be empty! 

IoTCore_2 Controller Error Element name should not be empty! 

IoTCore_3 Controller Error Element type should be selected! 

IoTCore_4 Controller Error At least one Communication element should be 

created! 

IoTCore_5 Controller Error At least one Language element should be created! 

IoTCore_6 Communication Error Element name should not be empty! 

IoTCore_7 Communication Error Element type should be selected! 

IoTCore_8 Communication Warning Ssid value should be entered. 

IoTCore_9 Communication Warning Password should be entered. 

IoTCore_10 Communication Warning Baudrate should be entered. 

IoTCore_11 Port Error Element name should not be empty! 

IoTCore_12 Port Error Element type should be selected! 

IoTCore_13 Language Error Element name should not be empty! 

IoTCore_14 Language Error Element type should be selected! 

IoTCore_15 Actuator Error Element name should not be empty! 

IoTCore_16 Actuator Error Element type should be selected! 

IoTCore_17 Sensor Error Element name should not be empty! 

IoTCore_18 Sensor Error Element type should be selected! 

 

6. Case Study 

In this section, we discuss the use of DSML4PT language and its IDE by taking into account the design 

and implementation of a fare collection system where validator devices are used in the public 

transportation vehicles. An iMX53 (NXP Semiconductor, 2017) series ARM core microprocessor is 

used in this validator device. It was a validator device with 1GB memory and 512MB hard disk space. 

There was a PN5180 (NXP Semiconductor, 2020) card reader circuit working with the Serial Peripheral 

Interface (SPI) in the device. This circuit was modeled as a sensor input and receives card reading 

information. In addition, there was a MAX9768 (Maxim Integrated, 2016) audio output circuit with 

Inter-Integrated Circuit (I2C) working as an actuator in the device and a 7” Liquid Crystal Display 

(LCD) output working with Low Voltage Differential Signal (LVDS) interface. The HE910 module was 

used as the GSM module. 

6.1. System Modeling for the Device 

Models for the validator device were created using the DSML4PT’s syntax for each modeling viewpoint. 

In DSML4PT’s IDE, any required modeling elements can be dragged-and-dropped from a palette 

including all visual notations of the entities for each DSML4PT viewpoint (see the right side of Figure 

4). Hence any instance of modeling elements can be created and moved on the public transportation 

model currently designed by the user. For instance, the model instance created for the IoT Core view of 

the validator system is given in Figure 4. Embedded Linux Kernel V4 operating system was used. In 

addition, 2 port SAM hardware specific to public transportation, (ITxPT, 2017) standard and CCTalk 

protocol were used. The model created for the Public Transport viewpoint which includes all these 

structures specialized for the public transportation, can be seen in Figure 5. This validator system 

receives data via a REST service. The validator service coded with Java can communicate with Android 

and iOS smartphones. In addition, an administrator application coded in Java language provides system 

monitoring and management using the validator service. Hence, the Service/Cloud model according to 

these specifications was designed as can be seen in Figure 6. 

 



Arslan, S & Kardas, G. (2023)   Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:6 – Sayı:2 

437 

 

Table 5. Validation rules for DSML4PT Public Transport viewpoint 

Rule Element Type Notification 

PubTrans_1 Architecture Error Element name should not be empty! 

PubTrans_2 Soc Error Element name should not be empty! 

PubTrans_3 Soc Error Element type should be selected! 

PubTrans_4 Soc Error At least one Language element should be created! 

PubTrans_5 Soc Error An OperatingSystem element should be created! 

PubTrans_6 Communication Error Element name should not be empty! 

PubTrans_7 Communication Error Element type should be selected! 

PubTrans_8 Communication Warning Ssid value should be entered. 

PubTrans_9 Communication Warning Password should be entered. 

PubTrans_10 Communication Warning Baudrate should be entered. 

PubTrans_11 OperatingSystem Error Element name should not be empty! 

PubTrans_12 OperatingSystem Error Element type should be selected! 

PubTrans_13 OperatingSystem Error A WindowSystem element should be created! 

PubTrans_14 SpecialHardware Error Element name should not be empty! 

PubTrans_15 SpecialHardware Error Element type should be selected! 

PubTrans_16 WindowSystem Error Element name should not be empty! 

PubTrans_17 WindowSystem Error Element type should be selected! 

PubTrans_18 WindowSystem Error A Language element should be created! 

PubTrans_19 Language Error Element name should not be empty! 

PubTrans_20 Language Error Element type should be selected! 

PubTrans_21 Standards Error Element name should not be empty! 

PubTrans_22 Standards Error Element type should be selected! 

PubTrans_23 Protocols Error Element name should not be empty! 

PubTrans_24 Protocols Error Element type should be selected! 

PubTrans_25 Actuator Error Element name should not be empty! 

PubTrans_26 Actuator Error Element type should be selected! 

PubTrans_27 Sensor Error Element name should not be empty! 

PubTrans_28 Sensor Error Element type should be selected! 

Table 6. Validation rules for DSML4PT Service/Cloud viewpoint 

Rule Element Type Notification 

Ser/Cloud_1 Architecture Error Element name should not be empty! 

Ser/Cloud_2 ServiceApp Error Element name should not be empty! 

Ser/Cloud_3 ServiceApp Error Element type should be selected! 

Ser/Cloud_4 ServiceApp Warning URI should be entered. 

Ser/Cloud_5 ServiceApp Warning Host should be entered. 

Ser/Cloud_6 ServiceApp Warning Authentication should be entered. 

Ser/Cloud_7 Cloud Error Element name should not be empty! 

Ser/Cloud_8 Cloud Error Element type should be selected! 

Ser/Cloud_9 Cloud Warning URI should be entered. 

Ser/Cloud_10 Cloud Warning Host should be entered. 

Ser/Cloud_11 Cloud Warning Authentication should be entered. 

Ser/Cloud_12 SmartPhone Error Element name should not be empty! 

Ser/Cloud_13 SmartPhone Error Element type should be selected! 

Ser/Cloud_14 MonitorApp Error Element name should not be empty! 

Ser/Cloud_15 MonitorApp Error Element type should be selected! 
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Figure 4. IoT Core viewpoint of the Validator IoT system. 

 

Figure 5. Public Transport viewpoint of the Validator IoT system. 
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Figure 6. Service/Cloud viewpoint of the Validator IoT system. 

6.2. Validation of the Modelled System 

While creating public transportation models, the previously described constraints of DSML4PT’s 

language are checked and the validation of the designed models is automatically performed. As 

mentioned before, there is a "Validate Diagram" selection inside the DSML4PT’s IDE for this purpose. 

When it is selected, the software developer (user of the language) is notified with error messages, if 

there are situations contrary to the metamodel definitions and static semantic rules discussed in the 

previous section of this paper. For example, in Figure 7, an error can be seen during the modeling of the 

Validator device inside the Public Transport viewpoint. According to the PubTrans_1 rule of the public 

transportation metamodel, the Architecture node in the Public Transport diagram must have a name. 

The tool has identified a deficiency in this model element and this is reported to the software developer. 

Model design can only be completed after all these errors have been corrected. 

 

Figure 7. An example of a DT model validation. 

6.3. Code Generation 

A total of 4 code files were generated from the DSML4PT models designed for the entire Validator IoT 

system within the scope of our case study. These generated code files are: (1) GTK application suitable 

for Linux X11 window system written in C language to run on the Validator device; (2) REST service 

application written in Java language; (3) System administrator desktop application code written in Java 

language; (4) Client application code written in Java for Android smartphones. Figure 8 shows the names 

of the generated code files in the DSML4PT IDE’s project view. 
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Figure 8. Generated code files shown in the tool project view. 

As explained in the previous sections, the creation of the public transportation system starts with the 

Architecture element. This element should be present in the public transportation system and its 

properties should be specified. Hence, the generation of artifacts from the designed DSML4PT models 

starts from Architecture element instances. Listing 1 shows an excerpt from the Acceleo rules written 

for M2T transformations to generate code in our study. If the condition in Line 01 is met during parsing 

a DSML4PT model instance, the part between the [if] lines will be generated as the corresponding code. 

Listing 1 is the Acceleo code example to produce the Wireless LAN node discovery function. Listing 

shows that the code block inside the if structure will be generated in case there is a Wifi assignment. 

After the condition is met, the value of the ssid variable coming from the model is assigned in the code 

as in the 4th line. Listing 2 shows an excerpt from the auto-generated C code when the M2T rule given 

in Listing 1 was automatically applied to our Validator instance model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 1: An excerpt from Acceleo code generating Wlan C code. 

Listing 1 shows the Acceleo M2T example written for the automatic generation of Wireless LAN code 

corresponding to SoC and Communication elements in the Public Transport viewpoint of a DSML4PT 

instance. Similarly, code generation for all elements of the designed public transportation system model 

was successfully realized. 

01 [if (anArchitecture.soc.communication.type.Wifi->notEmpty())]  

02 int wlan_detect() { 

03  int i, ret; 

04  char essid[20] = [anArchitecture.soc.communication.ssid/]; 

05  for(i = 0; i < 100; i++) { 

06   ret = WLGetESSID("wlan0", essid); 

07   if(ret == 0) { 

08    printf("Network found!\n"); 

09   } else { 

10    printf("Network NOT found!\n"); 

11   } 

12   printf("essid:%s\n", essid); 

13   sleep(1); 

14  } 

15  return 0; 

16 } 

17 [/if] 
 

 



Arslan, S & Kardas, G. (2023)   Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi Cilt:6 – Sayı:2 

441 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 2: Excerpt from generated Wlan C code. 

To provide the full implementation of the IoT Validator system, code generated by modeling should be 

completed by the users. Figure 9 lists the rate of manually added lines of code (LoC) in comparison with 

the auto-generated LoC for all viewpoints of the public transportation system. As can be seen from 

Figure 9, approximately 80% of the whole application was created by just modeling with DSML4PT. 

In other words, MDE with using DSML4PT enabled the auto-generation of a significant quantity of the 

software for the required system. We examined that the 20% of the application that could not be auto-

generated from DSML4PT model instances consists of hardware specific configurations and a few IoT 

library definitions, which are too dependent onto the underlying hardware and naturally modeling such 

platforms-specific components could not be included with the platform-independent metamodel of 

DSML4PT to preserve the higher abstraction and extensive support for different execution platforms. A 

final note on the generation performance of DSML4PT can be added for the comparison of auto-

generated LoC for each viewpoint. As can be seen again in Figure 9, the best code generation 

performance was obtained for the Public Transport viewpoint (85%). We believe that this slight increase 

in code generation encountered in this viewpoint is somehow related to DSML4PT’s all-embracing 

model for the public transportation domain as well as the majority of the modeling public transportation 

model elements in the case study, i.e. the number of the IoT components, modules and their relations 

for the validator hardware is relatively more than the remaining IoT core and service elements in the 

system-to-be-implemented. 

 

Figure 9. DSML4PT’s code generation performance. 
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01 int wlan_detect() { 

02  int i, ret; 

03  char essid[20] = 654321; 

04  for(i = 0; i < 100; i++) { 

05   ret = WLGetESSID("wlan0", essid); 

06   if(ret == 0) { 

07    printf("Network found!\n"); 

08   } else { 

09    printf("Network NOT found!\n"); 

10   } 

11   printf("essid:%d\n", essid); 

12   sleep(1); 

13  } 

14  return 0; 

15 } 
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When the full implementation of the application was completed with manual code editions, it was tested 

and executed onto the validator hardware described at the beginning of this section for fare collections 

in public transportation. As intended, a charge was collected from the existing amount by reading the 

RF card on the device. A screenshot of this IoT application is given in Figure 10. As it can be seen from 

the screenshot, the fee of 10 Turkish Liras (TL) has been collected for the current metrobus trip from a 

passenger card having 120 TL and a balance of 110 TL has been obtained after the related transaction. 

 

Figure 10. IoT validator application screen. 

7. Conclusion and Future Work 

Modeling IoT-based public transportation systems has been investigated and a DSML, called 

DSML4PT, has been introduced to support MDE of these systems. A metamodel including all entities 

and relations of IoT-based public transportation systems has been provided. Originating from this 

metamodel, we defined the syntax of DSML4PT language, so that instance models for the public 

transformation system software can be designed graphically from different system viewpoints. The 

semantics based on the model-to-text transformations led to the automatic generation of the code 

required for the implementation of the modeled systems. Based on the conducted study, we observed 

that almost 80% of an IoT-based public transportation application can be generated only with using 

DSML4PT. 

In our future work, we aim at evaluating the use of DSML4PT during MDE of additional public 

transportation applications which will help the improvement and/or extension of the language features 

to leverage the support of IoT platforms, tools and hardware for the transportation systems. Another 

future work will be the construction of some sort of synchronization mechanisms between the 

DSML4PT models and the system implementations, i.e. any change made in the generated code can be 

automatically applied to the corresponding DSML4PT instance models and vice versa. 
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