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Abstract: Modeling languages have gained ever-increasing importance for the Internet of Things (IoT)
domain for improving the productivity and quality of IoT developments. In this study, we analyzed
32 different modeling languages that have been designed for IoT software development in terms of a
set of requirements that were categorized into three groups: language definition, language features,
and tool support. Some key findings are as follows: (1) performance is the most supported quality
property (28%); (2) most languages offer a visual notation set only, while 6% provide both textual and
visual notation sets; (3) most languages (88%) lack formally precise semantic definitions; (4) most
languages (94%) support the physical, deployment, and logical modeling viewpoints, while the
behavior, logical, and information viewpoints are rarely supported; (5) almost none of the languages
enable extensibility; (6) Java (34%) and C (21%) are the most preferred programming languages
for model transformation; (7) consistency (77%) and completeness (64%) are the most supported
properties for the automated checking of models; and (8) most languages (81%) are not supported
with any websites for sharing case studies, source code, tools, tutorials, etc. The analysis results can
be useful for language engineers, practitioners, and tool vendors for better understanding the existing
languages for IoT, their weak and strong points, and IoT industries’ needs in future language and
modeling toolset developments.
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1. Introduction

The Internet of Things (IoT) is a network of physical objects and virtual devices that
communicate and interact with each other. “Things” here represent such things as wearable
devices, physical sensors (e.g., temperature and humidity sensors), engines, RFID tags, and
modern self-driving cars fully equipped with computers. Things are interconnected and
can exchange data. Devices in the IoT can be monitored and controlled remotely [1].

IoT opens up great opportunities to improve the way we live and work across het-
erogeneous things that can be either computer-based systems or physical objects. IoT
promotes the seamless and dynamic collaboration among things. However, designing,
developing, deploying, and managing a living network of things at runtime requires facing
many challenges to do with the heterogeneity, complexity, and availability of devices and
large amounts of data, security, and privacy [2–4].

As revealed in empirical studies and the surveys on IoT, developing IoT applications
is considered a complex, time-consuming, and challenging activity. Udoh and Kotonya [5]
showed in their study that practitioners face challenges while designing, developing, and
maintaining IoT software systems. Noura et al. [6] pointed out the lack of support for
domain-specific modeling, interoperability, and automation such as code generation and
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test generation for IoT. Berrouyne et al. [7] further indicated two essential IoT domain prob-
lems: (1) incomplete software design and (2) faulty manual code generation. Grace et al. [8]
pointed out the interoperability problems for IoT software systems. Ciccozzi et al. [4]
emphasized the communication difficulties between stakeholders. Siegel et al. [9] indi-
cated that the rapid growth of IoT is limited due to the lack of support for managing
resource usage, privacy, and security issues. Larrucea et al. [10] analyzed the software
engineering challenges and solutions for IoT domain practitioners, while Durmaz et al. [11]
considered the challenges of the intermittent execution of batteryless IoT devices and
proposed a new IoT programming model. Amin et al. [12] indicated many challenges in
the applications of IoT in practice, which are concerned with integrating heterogeneous
data between devices, data security, communication protocols, and big data collection and
analysis. An overview of IoT applications within the context of big data, data science, and
network science disciplines and the technologies for connecting them was also discussed
in their study. Moreover, another recent trend of IoT called the Social Internet of Things
(SIoT) for managing IoT application challenges such as scalability, service discovery, and
heterogeneity was investigated in [13].

The problems discussed above can be targeted with Model-Driven Engineering
(MDE) [14–16], which promotes the high-level specifications of abstract models for manag-
ing the complexity of systems and the use of modeling tools for the automated (i) detection
of errors, (ii) decision making, and (iii) generation of useful artifacts [17–19]. The IoT prob-
lems that are summarized above can be addressed with MDE thanks to its key advantages,
which are “abstraction”, “separation of concerns”, “high-level domain-specific solutions”,
“tool support for automation“, and “early analysis of design decisions”. Abstraction basi-
cally promotes suppressing unnecessary details that make things complex while specifying
models. The separation of concerns also promotes abstraction with its support for the
separation of models into concerns (e.g., structural, behavioral, interaction, concurrency,
information, and development) [15]. With modeling tools (e.g., [20]), abstract models can be
specified textually/visually and processed for, e.g., (i) tracing models; (ii) analyzing models
for quality properties (e.g., security); (iii) making automated decisions and visualizing
some findings; (iv) generating documents, code, and any useful artifacts; and (v) exporting
the modeled data into some standard exchange formats.

Modeling is facilitated by the modeling languages [21–23], which provide syntax and
semantics for the high-level (and sometimes precise) specifications of models and are sup-
ported with some tools for editing and processing models including model editors, model
validators, and model transformers. Modeling languages can be either general-purpose or
domain-specific. Unified Modeling Language (UML) [24], Systems Modeling Language
(SysML) [25], Business Process Modeling Notation (BPMN) [26], and ArchiMate [27] are
widely used general-purpose languages in industry for specifying any type of system.
DSMLs are each used for a particular domain. For instance, AADL [28], Modelica [29], and
Koala [30] are provided for the development of real-time embedded systems, cyber-physical
systems [29], and consumer electronics, respectively. Metamodeling technologies (e.g.,
Eclipse Modeling Framework (EMF) [31] and Metaedit+ [32]) are often used in industry
nowadays, facilitating the design of modeling languages and the development of their
supporting toolset.

Our focus in this study is the empirical studies/research and surveys on the IoT do-
main, as the usage of promised solutions of MDE for the IoT has been ever-increasingly ex-
panding [10,33,34]. Indeed, since the end of the 2010s, the use of MDE has increased, e.g., in
home automation [35], production systems [36,37], health systems [38], and smart cities [39].
However, it is not so easy for the practitioners who are interested in using/extending the
existing IoT modeling languages and tools to:

• Determine the existing IoT-based modeling languages and tools in the literature;
• Compare the languages for certain requirements;
• Choose the optimal approach(es) that best fits their requirements.
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Moreover, by just using the existing literature, language engineers for the IoT domain
cannot easily determine the strong and weak points of the existing languages with regard
to the important properties for practitioners. Similarly, tool vendors cannot also analyze
the existing language tools for IoT and determine their strong and weak points. Without
those data, the language engineers and tool vendors cannot easily address the needs of the
IoT modeling industry. While many empirical studies have already been conducted on
the analysis of modeling languages, none of them specifically considers the IoT modeling
languages and tools. As discussed in the related work section, the existing studies on
the IoT modeling languages and tools do not intend to reveal the existing languages and
analyze them for certain requirements, instead focusing on IoT development challenges
with MDE, such as complexity [39,40] and heterogeneity [37,41–44].

To bridge the gaps discussed above, our goal in this study was to analyze the existing
IoT-based modeling languages with a set of requirements that are considered important
for practitioners. To determine the requirements according to which the languages can be
analyzed, we considered Lago et al.‘s seminal work [45] on language requirements, where
the language requirements are categorized into three groups which are language definition,
language features, and tool support. Each category of requirements is supported with a
cohesive set of requirements, as introduced in [45]. Our contributions in this study include:

• Providing a single resource for accessing all the IoT modeling languages;
• The categorization of the languages based on their support for the language definition,

language features, and tool support requirements;
• Determining the language and tool requirements that are popular and those that are

weakly supported among the modeling languages;
• The identification of the languages that can be considered powerful in different cate-

gories of requirements.

We strongly believe that the results of this study will be highly beneficial for different
stakeholders involved in IoT software development, as the current literature does not
provide support for the analysis of the modeling languages for IoT and tools for the needs
of the practitioners. Practitioners can find out the language(s) that best meet their needs
and see if they can extend those languages or not. Language engineers and tool vendors can
use the results to determine the strong and weak points of the existing modeling languages
for IoT and initiate projects for bridging the gaps. Moreover, for researchers, the results can
trigger new empirical studies that focus on better understanding practitioners’ interest in
modeling, modeling languages, and even metamodeling in the IoT field and further inspire
the researchers to conduct similar analytical studies on the modeling languages developed
for different domains.

This paper is organized as follows: Related work is discussed in Section 2. In Section 3,
the requirements for the analysis of modeling languages for IoT are introduced. In Section 4,
the research methodology in selecting modeling languages for IoT to be analyzed, collecting
requirements data, and analyzing these data is explained. In Section 5, the analysis results
for the language definition requirements, language feature requirements, and tool support
requirements are discussed. In Section 6, we discuss the achieved results and the threats to
their validity. Section 7 concludes the paper.

2. Related Work

Many studies focus on the IoT domain as one of the most promising areas of the
technology today. These studies generally cover IoT development and naturally consider
the complexity of IoT application development. MDE comes with suggestions to reduce
this complexity. Many studies in the literature describe the language, framework, and
toolkit that include MDE of IoT applications. However, almost none of these existing
studies examine the needs of practitioners in terms of MDE languages or tools.

The related work is presented in two sections: (1) studies analyzing the languages and
(2) MDE for IoT studies.
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2.1. Surveys on Architectural and Modeling Languages

One of the most comprehensive studies in the literature that analyzes languages
considering the needs of practitioners was carried out by Ozkaya [46]. The parameters that
are very important for practitioners were examined in 124 different architectural languages
(ALs). Information and comparison opportunities for practitioners to choose the language
most suitable for their needs among ALs were provided by this study.

Survey studies with a narrower scope than [46] and focusing on the analysis of
practitioners’ needs are also available in the literature [47–60]. However, the number of
languages studied and the language features analyzed in these studies are very limited.

Medvidovic and Taylor [47] and Clements [48] analyzed a group of ALs in order to
describe the languages and provide a framework, which was made in the 1990s. Medvi-
dovic et al. [49] later extended their previous work, which mainly focused on the techno-
logical aspect of software architectures, to include ALs in the 2000s. However, only eight
languages were considered in this study. Another study was conducted by Vestal [50]
which analyzed the four main languages for many criteria such as support for components
and connectors, formal analysis, and automatic code generation. In the study of Hilliard
and Rice [51], ALs developed in the 1990s were analyzed to measure expressiveness. In
the study of Ali et al. [52], the authors focused on understanding whether languages offer
explicit constructs in their notation to indicate distributed and mobile software systems and
analyzed eight languages. In the study of McKenzie et al. [53], the authors focused on using
formal ALs for the analysis and design of simulation systems and their key features. In Qin
and Malik’s [54] study, the authors surveyed eight different ALs for specification and formal
analysis of retargetable compiler systems (e.g., assemblers and simulators). Mishra and
Dutt [55] divided ALs into three groups: structural, behavioral, and mixed ALs. Structural
ALs support logical view and behavioral ALs support behavioral view, while hybrid ones
support both views simultaneously. Ozkaya and Kloukinas [56] analyzed 12 ALs for formal
analysis, usability, and feasibility. Balaban et al. [57] analyzed three popular textual mod-
eling languages to determine their similarities and differences, while Bergmayr et al. [58]
examined 19 cloud modeling languages for a set of requirements that were categorized as
language characteristics, modeling capabilities, and tool support. Twelve different ALs
that support microservice architecture specifications with regard to six different language
categories were considered in Lelovic et al. [59]. Lastly, Alidra et al. [60] analyzed 16 model-
ing languages that support fog computing for a comprehensive set of requirements which
were categorized as language scope, language definition, implementation, capabilities,
interoperability, exploitation, validation, and documentation.

Table 1 gives the analysis results of the similar studies with regard to the properties
of interest, which are (i) the year the study was published, (ii) the scope of the study,
(iii) the number of languages considered in the study, and (iv) 12 different requirements
that are categorized as the language definition, language features, and tool support. This
requirement categorization was inspired by Lago et al.’s framework [45], and all these
defined requirements will be discussed extensively in the following Section 3. None of
the similar studies considers all 12 requirements which our study uses for analyzing the
modeling languages. The only exception here is Ozkaya [46], which, however, focuses
on the ALs in general, not the IoT domain. Our study differs from the previous ones by
both taking into consideration all of Lago et al.’s [44] language criteria enriched with the
new specifications for IoT application development requirements and multiple viewpoints
and utilizing these criteria for evaluating modeling languages for the IoT domain for the
first time.



Mathematics 2023, 11, 1263 5 of 35

Table 1. The summary of the analysis of the related studies.

Survey RY Scope Cons
Lang#

Language Definition Language Features Tool Support

NonFunc
Req NotSet ForSem MulView ExMec Prog

Frame
Auto

Analy LVM Col Ver Know
Man S-C

Our study 2023 IoT-based modeling languages 32 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Alidra et al. [60] 2023 Fog computing 16 Yes Yes Yes Yes Yes Yes Yes No No Yes Yes Yes

Lelovic et al. [59] 2022 Microservice architectures 12 No Yes No No No Yes No No No No No No

Bergmayr et al. [58] 2018 Cloud modeling languages 19 No Yes Yes Yes No Yes Yes Yes No No No Yes

Ozkaya [46] 2018 Defining an AL’s capabilities 124 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Balaban et al. [57] 2016 Textual modeling languages 3 No Yes Yes Yes No No Yes Yes No No No No

Ozkaya and Kloukinas [56] 2013 Defining an AL’s capabilities 13 No No Yes No No No Yes Yes No No No No

Ali et al. [52] 2008 Distributed and mobile
software systems 8 No Yes Yes No No Yes Yes Yes No No No Yes

Qin and Malik [54] 2007 Retargetable compilers 12 No No Yes No Yes Yes Yes Yes No No No Yes

Medvidovic et al. [49] 2007 Defining an AL’s capabilities 9 Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes

Mishra and Dutt [55] 2005 Programmable embedded systems 9 No No No No No Yes Yes No No No No Yes

McKenzie et al. [53] 2004 Simulation systems 2 No Yes Yes Yes No Yes Yes Yes No No No Yes

Medvidovic and Taylor [47] 2000 Defining an AL’s capabilities 9 Yes No Yes Yes No Yes Yes Yes No Yes No No

Hilliard and Rice [51] 1998 Defining an AL’s capabilities 13 No No No Yes No No No No No No No Yes

Clements [48] 1996 Defining an AL’s capabilities 8 No Yes Yes No Yes Yes Yes No No No No Yes

Vestal [50] 1993 Defining an AL’s capabilities 4 Yes Yes Yes No Yes Yes Yes Yes No Yes No Yes

Abbreviations: Auto Analy: automated analysis, Col: collaboration, Cons Lang#: the number of considered languages, ExMec: extension mechanism, ForSem: formal semantics,
Know Man: knowledge management, LVM: large-view management, MulView: multiple viewpoints, NonFunc Req: nonfunctional requirements, NotSet: notation set, Prog Frame:
programming framework, RY: release year, S-C: software architecture-centric design, Ver: versioning.
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Additionally, it is worth noting that recently significant research also exists on sur-
veying modeling languages and MDE for various domains. For instance, de Araujo
Silva et al. [61] discussed the motivations, challenges, methods, and future perspectives
of MDE in robotics, while [62] presented 28 tools which assist modeling, model transfor-
mation, and model checking during MDE of embedded systems. Again for the embedded
system domain, Liebel et al. [63] provided information about the methods and tools used,
purposes of the models, effects of using it, and weaknesses of model-based software en-
gineering. Visual programming tools for the development of intelligent and social robots
were investigated in [64], and the need for the validation of these tools in real environments
instead of laboratory settings was highlighted. Finally, modeling aspects of cyber-physical
systems from the perspectives of, e.g., security engineering [65], MDE techniques used [66],
multi-paradigm modeling [67], and applied tools and the research practices [68] were also
considered. Our study contributes to these existing modeling surveys by introducing a com-
parative evaluation with architectural language requirements and providing an analysis of
a different domain that covers modeling IoT applications.

2.2. MDE for IoT Studies

The use of MDE techniques to design and implement IoT systems has become one of
the most popular topics in both IoT and software engineering research fields. For example,
Li et al. [69] identified the IoT trends in the field of space sciences and discussed how the
sensors and functional IoT infrastructures of digital twins can be modeled. Fortino et al. [70]
aimed at providing the baseline definitions for IoT development products such as method-
ologies, frameworks, platforms, and tools and indicated the benefits of using model-driven
IoT development methodologies especially to tackle the difficulties of supporting interoper-
ability for the target IoT systems. Silva and Hirmer [71] surveyed several IoT environment
models according to their maturity, hierarchy, availability and implementation, and ge-
olocation support to describe the components of IoT systems, such as devices, attached
sensors, and actuators. Although IoT environment models can naturally be utilized, e.g., as
the metamodels of current or future IoT modeling languages, Silva and Hirmer’s study did
not cover these modeling languages and their evaluation. Starting from the heterogeneous
aspects of IoT systems’ data, communication, and implementation layers, Ihirwe et al. [72]
aimed to determine the implications of the current trend of moving traditional system
modeling infrastructures to the cloud. They focused on different cloud-based IoT system
development approaches and highlighted the benefits of adopting cloud-based modeling
of IoT systems in attracting more citizen developers, collaborative modeling, productivity,
maintenance, and monitoring and debugging IoT applications.

To simulate the communication between IoT devices and their behavior in differ-
ent situations, model-based development of a smart home scenario was discussed in
Kölsch et al. [35]. The modeling approach presented in [36] enabled the developers to
design IoT components using the UML and SysML standards. A UML profile was also
proposed to automate the transformation of the IoT component to an interface ready to be
integrated into the modern IoT manufacturing environment. Likewise, Khaeel et al. [37]
introduced model-driven development tools as part of their IoT framework to develop
heterogeneous applications for the car manufacturing industry. The use of such modeling
tools enabled them to build IoT applications, linking their components and implementing
proper security solutions. Mezghani et al. [38] demonstrated the efficiency of using model-
ing patterns by developing a cognitive monitoring system for managing patients’ health
based on heterogeneous wearables. Hause et al. [39] discussed how MDE tools can assist
implementing and executing IoT system designs for smart cities by especially focusing on
the selection of the controlled or coordinated traffic signals for the predictive and adaptive
traffic management systems. A model-driven and service-centric approach was presented
in [41] to cope with the challenges in both the convergence of different network communi-
cation protocols and IoT and the uniform management of IoT services. Sharaf et al. [42]
introduced a code generation methodology that covers a full chain of modeling, analyzing,
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and implementing IoT systems. Similarly, in Pusztai et al.’s methodology [43], design-time
modeling of IoT device interfaces was possible, and code for participating devices was
automatically generated from these design models.

Although the above-mentioned studies provided valuable MDE methods and/or tools
to be employed in current IoT applications, they did not provide a comprehensive analysis
of the language requirements and features of the modeling languages that exist for IoT
development as we do in our study.

3. The Requirements for the Modeling Languages

The approach proposed by Lago et al. [45] was used in this study, which offers a
framework for designing and developing languages with the considerations of practitioners’
needs and expectations. Indeed, the framework here was developed after conducting
surveys on 48 different practitioners from 40 IT companies and thus is the result of feedback
from practitioners’ expectations [73]. In this framework, language requirements are divided
into three main groups: (1) language definition, (2) language features, and (3) tool support.
Information about these groups is given in the following subsections.

3.1. Language Definition

Language definition can be handled under three main groups: (1) nonfunctional
properties, (2) textual and visual notation sets, and (3) formal semantics. These relate to
the definition of language syntax and semantics. Nonfunctional properties are to do with
specifying quality requirements (e.g., security, performance, and reliability) and verifying
models against those requirements. Any language can offer textual, visual (also known as
graphical), or hybrid notation sets. Semantics can be defined either formally or informally.
Formal semantics for a language is defined using mathematical-based formal techniques
such as π-computation [74] and Communicating Sequential Processes (CSP) [75]. Informal
semantics are often described using plain English.

3.2. Language Features

Language features are considered in terms of three requirements: (1) multiple view-
points, (2) extensibility and customization, and (3) programming framework. Multiple
viewpoint support is to do with the separation of concerns for managing the complexity of
software systems. Each viewpoint focuses on a particular concern and enables modeling for
that concern only (e.g., separating models in accordance with the logical, information, phys-
ical, deployment, behavior, concurrency, development, and operational viewpoints) [76–78].
Extensibility and customization are to do with extending languages with some desired
capabilities such as domain-specific elements, analytics support, and support for different
views. In this study, two different extension mechanisms, syntax and semantic exten-
sions, are discussed [79]. The programming framework is concerned with the support
for any framework that can facilitate the specification, analysis, and transformation of
software models.

3.3. Tool Support

Six different requirements are addressed for the tool support. These are: (1) automated
analysis, (2) large-view management, (3) collaboration support, (4) versioning support,
(5) knowledge management support, and (6) software architecture-centric design support.
The automated analysis support is considered in terms of analyzing models for four
important goals: completeness, consistency, correctness, and compatibility. Additionally,
other important analysis capabilities are also considered such as exhaustive model checking,
simulation, and user-defined requirements. Large-view management is concerned with the
techniques and methods used for modeling large and complex views of software systems in
a more manageable way that is easier to understand and analyze, such as sub-diagramming
support and composite elements. The collaboration support is concerned with the multi-
user support for the specifications of models. Indeed, the physically separated users may
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need to specify models synchronously or asynchronously. Versioning support is about
keeping a repository of software specifications with some release details. Knowledge
management support relates to publishing language-related information such as tools and
case studies, publications, and user guides through websites. It also provides platforms
such as discussion forums for practitioners to exchange ideas with each other and find
solutions to their language-related problems. The architecture-centric design relates to
the tools for integrating the software architecture design with other phases of software
development, including requirements specification and analysis, low-level software design,
and software implementation.

4. Research Methodology

In this study, we used the popular search engines Google and Google Scholar to
find any documents regarding the modeling languages for IoT. All publications from our
accounts such as IEEE/ACM/Springer-link/Elsevier/Wiley were reviewed and recorded
between 15 April and 11 August 2022. All languages and tools, if any, and websites were
examined; all available technical reports, theses, toolkits, and user manuals were kept
in an organized manner. A folder consisting of a series of subfolders was created for
each language to be analyzed. First of all, the web address of the language (if any) was
saved in one of the subfolders. Note that each language was searched with Google to
access any website that reveals the language’s supporting materials. Language-related
publications that were available in IEEE/ACM/Springer-link/Elsevier/Wiley were stored
in another subfolder. Technical reports/dissertations that can be downloaded for free were
also included in the subfolder. In another subfolder, the supporting toolset (if any) was
downloaded to experiment with the language. The language manuals (if any) were taken
and stored in a subfolder.

To collect the published papers about the modeling languages for IoT, we followed
the screening and reviewing process depicted in Figure 1 which is based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline [80]. In
the first stage (identification), we scanned the digital databases (IEEE, ACM, Springer-link,
Elsevier, and Wiley) that enable access to the journal and conference publications and found
495 papers about the modeling languages for IoT. To obtain the papers (i.e., records in
Figure 1), we used many keywords on Google, and some important ones are as follows:
(1) modeling languages IoT; (2) IoT-based modeling languages; (3) IoT modeling; (4) model-
based (and -driven) engineering in IoT; (5) metamodeling IoT; (6) survey on IoT modeling;
(7) practitioners modeling IoT; and (8) analysis of modeling languages IoT. Having obtained
495 different records with the keywords given above, we then examined and filtered the
records whose duplicates are available in our list. So, we removed 172 duplicate records
whose titles were the same as some other existing records but had been published in
different databases. We ended up with 323 records that could then be considered as reports,
each of which represented a document supplying information about a particular study.
Reports could be a journal article, preprint, conference abstract/paper, study register
entry, dissertation, unpublished manuscript, or any other document providing relevant
information. On the other hand, a record is the title or abstract (or both) of a report indexed
in a database or a website.

In the next stage, among the 323 reports remaining, we removed another 81 reports
that lacked full texts and ended up with 242 reports (i.e., papers with full texts). Then, we
applied a set of exclusion criteria that we believe are highly important for obtaining the
sub-list of reports which we could effectively use for our study. These exclusion criteria
and the number of the studies excluded according to each of these criteria were as follows:
(1) Study is a secondary study (survey, systematic mapping, systematic review, etc.) (n = 29).
(2) Study is irrelevant to IoT or any of its application domains and the field of software
modeling (n = 86). (3) Study is a summarized version of a complete work already in the
search pool (n = 24). (4) Study is a kind of educational, editorial, tutorial, or other material
(i.e., not a scientific paper) (n = 30). (5) Study is not written in English (n = 34). After
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excluding the reports based on the exclusion criteria, we ended up with 46 reports and
32 studies. These 46 reports related to 32 different modeling languages. So, in our study,
we decided to focus on these 32 languages.
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After reviewing and filtering the collected papers, we started the data collection pro-
cess for each of the 32 modeling languages considered and thus examined the related papers
based on a set of requirements. To determine the set of requirements here, we focused
on the language requirements framework proposed in Lago et al.’s seminal study [45].
Lago et al. categorized the language requirements as language definition, language fea-
tures, and tool support and proposed a set of requirements for each category. To enhance
the precision of our data analysis, we extended the requirements proposed by Lago et al.
with some sub-requirements as shown in Figure 2. For instance, the multiple viewpoints
support was considered in our study in terms of the support for some specific modeling
viewpoints that we believe are highly crucial for IoT software development, which include
logical, information, physical, deployment, behavior, concurrency, development, and op-
erational viewpoints [76]. The analysis tool support was also considered in terms of the
support for some precise analysis goals (i.e., completeness, consistency, correctness, and
compatibility) [77] and some specific analysis capabilities (e.g., deadlock checking and
simulation support). We analyzed each of the 32 languages for each requirement and their
sub-requirements (if any) listed in Figure 2 and collected data accordingly.
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for IoT.

To maximize the quality of the data collected, each author of this study performed
the data collection process individually. So, each author examined the papers (and any
other helper documents and tools) for the 32 modeling languages and obtained the data
with regard to the requirements given in Figure 2. Then, the collected data by the authors
were compared to determine any inconsistencies. The inconsistent parts were re-analyzed
together with all authors until reaching a consensus.

To collect data for a modeling language based on a set of requirements, several
iterations were performed by the authors. In the first iteration, the papers of each language
were reviewed by the authors to familiarize themselves with the language (i.e., its definition,
features, and tool support). In cases where theoretical knowledge was not very helpful
in understanding the language and a toolkit was available, the toolkit was loaded. The
language was tested with simple case studies such as reading from a temperature sensor.
Next, a table was created in an Excel sheet by the authors to store the data to be collected
for the languages, with columns for the requirements and rows for the corresponding
languages. In the next iteration, the publications of each language (and also any helper
documents and tools if needed) were reviewed for the set of requirements considered, and
the data collected for each language were stored in the Excel table. The Excel table was also
checked in another iteration to determine if there were missing data for each language.

After collecting the data and analyzing them together with the authors for any incon-
sistencies, we focused on analyzing the data to come up with some results and lessons.
To this end, we analyzed the data collected for each requirement separately and we also
focused on any correlations where satisfying one requirement could affect the level of
consideration for another related requirement. While analyzing the data, we re-examined
the papers for some languages when we were unsure about the completeness and cor-
rectness of the data we had. Next, we drew some charts using MS Office Excel and SPSS
tools to visualize the results for the requirements. We prepared tables for the requirements
where we displayed information regarding the languages’ support for the requirements.
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The tables give information about which languages support which requirement(s) and
how. We also drew pie charts to display the percentages of the languages that support
the requirements with particular attributes (i.e., the division of the number of languages
supporting one particular attribute by the number of languages supporting the requirement
in general) so as to show which attributes of the requirement are more/less popular among
the languages (e.g., the programming languages’ support of the languages).

5. Analysis Results

In this section, we discuss the analysis results according to the language requirements,
introduced in the previous section, and categorized as the language definition, language
features, and tool support.

5.1. Language Definition
5.1.1. Nonfunctional Properties

Nonfunctional properties define the quality requirements for a software system such
as performance and security requirements [15]. Nonfunctional requirement properties can
also be specified during the architectural design of software systems and further used for
analyzing models.

As shown in Table 2, many modeling languages for IoT support the specifications of
one or more nonfunctional properties such as performance, safety, reliability, availability,
plannability, and resource consumption. Figure 3 shows the percentages of the languages
that support each type of nonfunctional requirements indicated in Table 2 (i.e., the division
of the number of languages that support each type of nonfunctional property by the number
of languages supporting the nonfunctional properties). The most supported nonfunctional
properties are performance (28%), security (14%), and reliability (10%). Note that 24% of
the languages support the specifications of any type of nonfunctional properties via the use
of aspects and formal methods.
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Table 2. The modeling languages for IoT that support the different types of nonfunctional properties
and their notation set types.

Language Nonfunctional Requirements Notation

DSML4TinyOS [81–83] Performance Graphical notation

ThingML [22,84–86] Performance, schedulability, reliability Graphical notation

UML4IoT [36,87,88] Performance, reliability, security,
timeliness, resource consumption Graphical notation

IoT-PML [89] General Graphical notation

Centurión et al. [90] Security, scalability Graphical notation

COMFIT [91] Performance, reliability, security,
portability, resource consumption Graphical notation

HSML [92] Performance, resource consumption Hybrid (FSM- and HTML-like)

IoTDraw and SoaML4IoT [93,94] General Graphical notation

Alulema et al. [44] Performance Graphical notation

EL4IoT [95,96] General Graphical notation

Asici et al. [97] Performance Graphical notation

Sosa-Reyna et al. [98,99] General Graphical notation

Genesis [100,101] General Graphical notation

BRAIN-IoT [102] Performance, security, resource
consumption Graphical notation

IADev [103] Performance, reliability, scalability Graphical notation

Iovino et al. [104] Security, availability Graphical notation

IoTSuite [105,106] Scalability Graphical notation

Vitruvius [107] General Graphical notation

Midgar [108,109] Performance Graphical notation

Schachinger and Kastner [110] General Graphical notation

Karkouch et al. [111] General Graphical notation

IoTLink [37,112,113] Performance Graphical notation

SysML4IoT [114,115] General Graphical notation

FRASAD [116] Portability Graphical notation

Vorto [117] General Textual notation

DivEnact [118] Reliability Graphical notation

ENACT DevOps [119] General Graphical notation

FogUML2Code [43] Security Graphical notation

Betancourt et al. [120] General Graphical notation

MAF [121] Performance Graphical notation

Hassine et al. [122] Performance Graphical notation

SecKit [123] Performance, security Tree notation

5.1.2. Textual or Visual Notation Set

The textual modeling notation set for a language promotes writing formatted text
in accordance with the language syntax definitions, while the visual notation set for a
language promotes drawing diagrams (sometimes supplemented with text) using a set
of language concepts represented with visual symbols. Modeling languages for IoT offer
textual, visual, or hybrid notation sets, which could affect the practitioners’ choice.
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Table 2 shows the languages with their supported notation set types. Note that HSML
is the only language that offers a hybrid notation set. HSML essentially supports multiple-
viewpoint modeling where different viewpoints are supported with different types of
notation sets. Vorto is the only language that supports a textual notation set exclusively.
SecKit is supported with a tree notation. As also indicated in Figure 4, all other modeling
languages for IoT support a visual notation set exclusively.
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5.1.3. Semantics Definition

The semantics of a language can be defined informally or formally. The informal
semantics of a language are defined in simple English. Therefore, the language notation set
with informally defined semantics may not always be clearly understood. Indeed, despite
being the most used language in industry, UML [24] has no formally defined semantics,
and thus UML diagrams may sometimes cause ambiguities and different interpretations.
The formal semantics of a language are fully defined using mathematically based formal
methods, which lead to precise model specifications that are ensured to be interpreted in
the same way. Such formal methods can take different forms, namely, operational [124],
denotational [125], and axiomatic [126]. Moreover, the semantics of some languages are
defined using formal specification languages such as π-calculus [74], Petri nets [127], and
Temporal Logic [128].

The analysis results show that most modeling languages for IoT are supported with
informal semantic definitions (88%). This result is similar to (or even slightly greater than)
the findings of [129] where 83% of domain-specific languages were informally defined. It
is worth noting that languages which provide some sort of translational semantics over a
series of model-to-model and/or model-to-text transformations to execute the IoT models
on underlying implementation platforms are also considered as having informal semantics
since they still lack a formal definition of these semantics. As can be seen from Table 3,
29 languages have informally defined semantics, 1 uses fUML [130], 1 uses Petri nets, and 1
uses Temporal Logic. It is expected that the informal semantics ratio is high for the highly
heterogeneous IoT domain, which contains many different units.

5.2. Language Features
5.2.1. Multiple Viewpoints

In this study, logical, information, physical, deployment, behavior, concurrency, devel-
opment, and operational multiple viewpoints proposed by Taylor et al. [77] are considered.
The logical viewpoint describes the logical components and connectors that together com-
pose a software system. The information viewpoint describes how components store,
manipulate, and exchange their data. The physical viewpoint describes the hardware
components on which the software components will be placed and the physical rela-
tionships between the hardware components. The deployment viewpoint defines the
mapping between hardware components and logical components. The behavior viewpoint
describes the behavior of system components and any complex interaction mechanisms
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(i.e., interaction protocols). The concurrency viewpoint describes the strategies and deci-
sions in managing the concurrency issues such as threading and synchronization between
components, deadlock, and race condition. The development viewpoint describes how
to implement and test components and connectors. Finally, the operational viewpoint
describes how to run the system in the environment of the specified software system, in-
cluding plans to set up the system, any configuration, support for users, system monitoring,
and backup/restore issues.

Table 3. The modeling languages for IoT that support informal semantics or formal semantics definition.

Language Formal Semantics

DSML4TinyOS [81–83] Informal semantics

ThingML [22,84–86] Informal semantics

UML4IoT [36,87,88] Informal semantics

IoT-PML [89] Informal semantics

Centurión et al. [90] Informal semantics

COMFIT [91] Informal semantics

HSML [92] Informal semantics

IoTDraw and SoaML4IoT [93,94] fUML [130]

Alulema et al. [44] Informal semantics

EL4IoT [95,96] Informal semantics

Asici et al. [97] Petri nets [127]

Sosa-Reyna et al. [98,99] Informal semantics

Genesis [100,101] Informal semantics

BRAIN-IoT [102] Informal semantics

IADev [103] Informal semantics

Iovino et al. [104] Informal semantics

IoTSuite [105,106] Informal semantics

Vitruvius [107] Informal semantics

Midgar [108,109] Informal semantics

Schachinger and Kastner [110] Informal semantics

Karkouch et al. [111] Informal semantics

IoTLink [37,112,113] Informal semantics

SysML4IoT [114,115] Informal semantics

FRASAD [116] Informal semantics

Vorto [117] Informal semantics

DivEnact [118] Informal semantics

ENACT DevOps [119] Informal semantics

FogUML2Code [43] Informal semantics

Betancourt et al. [120] Informal semantics

MAF [121] Informal semantics

Hassine et al. [122] Informal semantics

SecKit [123] Temporal Logic [123]

According to the results, almost all the languages support physical (94%), deployment
(94%), and logical (94%) viewpoints. Given that the IoT domain is tightly dependent on
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hardware and software distribution, it is quite normal to have a very high rate of physical
and deployment viewpoint support. The rest of the viewpoints considered are rarely
supported by the languages: 34% of the languages support the behavior viewpoint and
3% of the languages support the information viewpoint. Table 4 shows the languages with
multiple viewpoints support. The language that provides the widest viewpoint support
is ENACT DevOps [119], which supports physical, behavior, logical, information, and
deployment viewpoints.

Table 4. The modeling languages for IoT that support multiple viewpoints.

Language Multiple Viewpoints

DSML4TinyOS [81–83] Physical, deployment, logical

ThingML [22,84–86] Physical, logical, behavior, deployment

UML4IoT [36,87,88] Physical, deployment, logical

IoT-PML [89] Physical, deployment, logical

Centurión et al. [90] Physical, deployment, logical

COMFIT [91] Physical, deployment, logical, behavior

HSML [92] Physical, behavior, deployment

IoTDraw and SoaML4IoT [93,94] Physical, deployment, logical

Alulema et al. [44] Physical, deployment, logical

EL4IoT [95,96] Physical, behavior, deployment, logical

Asici et al. [97] Physical, deployment, logical

Sosa-Reyna et al. [98,99] Physical, deployment, logical

Genesis [100,101] Physical, deployment, logical

BRAIN-IoT [102] Physical, logical, behavior, deployment

IADev [103] Physical, deployment, logical

Iovino et al. [104] Physical, logical, behavior, deployment

IoTSuite [105,106] Physical, deployment, logical

Vitruvius [107] Physical, deployment, logical

Midgar [108,109] Physical, deployment, logical

Schachinger and Kastner [110] Physical, deployment, logical

Karkouch et al. [111] Physical, deployment, logical

IoTLink [37,112,113] Physical, deployment, logical

SysML4IoT [114,115] Physical, logical, behavior, deployment

FRASAD [116] Physical, deployment, logical

Vorto [117] Logical, behavior

DivEnact [118] Physical, logical, behavior, deployment

ENACT DevOps [119] Physical, behavior, logical, information,
deployment

FogUML2Code [43] Physical, deployment, logical

Betancourt et al. [120] Physical, deployment, logical

MAF [121] Physical, deployment, logical

Hassine et al. [122] Physical, deployment, logical

SecKit [123] Logical, behavior

The analysis results indicate that none of the modeling languages for IoT support
all the viewpoints considered (i.e., logical, information, behavior, development, physical,
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deployment, concurrency, and operational viewpoints). However, the viewpoints such
as information and concurrency that are not particularly supported by the languages are
likely to be very useful to the implementers during IoT software development. Indeed,
in many IoT problems, data in different formats need to flow between different IoT units.
Moreover, IoT systems carry out data manipulations and data storage operations. So, we
strongly believe that information viewpoint modeling is highly important for IoT software
development. The IoT domain structure includes heterogeneous units with different and
distributed functions. Simultaneous operation is very important because of this distributed
unit layout. It is thought that this situation can be improved with the support of the
concurrency viewpoint.

5.2.2. Extensibility

Extensibility is to do with the ability to extend a language with new language definition
concepts, language features, and tools [131–133]. This includes support for new viewpoints,
adding domain-specific features (e.g., identifying and analyzing nonfunctional features);
expanding tool support with the necessary possibilities (e.g., formal analysis, simulation,
and code generation); adding/removing new elements (e.g., complex connectors); or
introducing a subnotation (e.g., a visual notation set).

Only three modeling languages for IoT (9%) support extensibility: (1) IoT-PML [89];
(2) IoTDraw and SoaML4IoT [93,94]; and (3) Vorto [117]. IoT-PML [89] supports extensibility
with the addition of new modeling elements for different layers of the metamodel definition,
and the new element is expected to follow the rules of that layer in which it is defined.
IoTDraw and SoaML4IoT’s [93,94] extensibility enables defining new properties for the
existing modeling elements and defining new (executable) semantics for the existing
modeling elements under some restrictions. In Vorto [117], the language definition cannot
be extended. However, Vorto is the only language that provides support (SDKs) for
introducing new code generators and transformation tools (i.e., the tools that can transform
models in another modeling language into the model in Vorto).

5.2.3. Programming Framework

The programming framework includes support for IoT such as design patterns, ar-
chitectural style, and generating library code from the model. All of the 32 languages
analyzed offer an editor to specify software/hardware models textually/visually and check
the models against the syntax and semantic rules of the languages. As shown in Table 5,
the language editors also support the automatic code generation from model specifications.
Figure 5 also shows the percentages of the modeling languages and their tools that support
each programming language for code generation. Code generation in Java has the highest
rate (34%), which is followed by C (21%), JavaScript (13%), C++ (11%), configuration files
(XML, manifest, etc.) (9%), Obj-C (4%), nesC (4%), C# (2%), and Python (2%).
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Table 5. The modeling languages for IoT that support automated code generation via their tools.

Language Programming Languages

DSML4TinyOS [81–83] nesC

ThingML [22,84–86] C/C++, Java, JavaScript

UML4IoT [36,87,88] C, Java

IoT-PML [89] Java

Centurión et al. [90] pp configuration file

COMFIT [91] nesC, JavaScript

HSML [92] JavaScript

IoTDraw and SoaML4IoT [93,94] Java

Alulema et al. [44] C, Java

EL4IoT [95,96] nesC, XML config file

Asici et al. [97] C, Java

Sosa-Reyna et al. [98,99] nesC

Genesis [100,101] C/C++, Java, JavaScript

BRAIN-IoT [102] Java, Manifest script file

IADev [103] Java, JavaScript

Iovino et al. [104] Java

IoTSuite [105,106] Java

Vitruvius [107] JavaScript

Midgar [108,109] C, Java, C#, Obj-C

Schachinger and Kastner [110] Java

Karkouch et al. [111] Java

IoTLink [37,112,113] Java

SysML4IoT [114,115] Java

FRASAD [116] C/C++, Java

Vorto [117] C/C++, Java, Python

DivEnact [118] Configuration file

ENACT DevOps [119] C/C++, Java, JavaScript

FogUML2Code [43] C, Java

Betancourt et al. [120] Configuration file

MAF [121] Java, JSON, Obj-C

Hassine et al. [122] Java

SecKit [123] C/C++, Java

Some of the modeling languages for IoT support four different programming lan-
guages at the same time. These are (1) ThingML [22,84–86] with its support for C, C++,
Java, and JavaScript; (2) Genesis [100,101] with its support for C, C++, Java, and JavaScript;
(3) Midgar [108,109] with its support for C, Java, C#, and Obj-C; (4) Vorto [117] with its
support for C, C++, Java, and Python; and (5) ENACT DevOps [119] with its support for C,
C++, Java, and JavaScript.

Note that none of the modeling languages supports pattern-centered design (i.e.,
modeling with the reuse of existing patterns or modeling for defining reusable patterns).
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5.3. Tool Support
5.3.1. Model Analysis

According to the analysis results, 22 modeling languages (69%) support the automatic
analysis of models for completeness, consistency, correctness, and compatibility. Com-
pleteness relates to the level of detail contained in the characteristics of design decisions
(e.g., system behavior and interaction) and is used to check whether the design decisions
take into account all the requirements of the system. Consistency is about any conflicts
between elements (e.g., components, interfaces, and connectors) specified in the model.
This includes the consistency between the name of a service required and provided by
the ports, connecting a required component port with a provided component port, the
consistency between the required and provided behaviors of a service, and the consistency
between the order of services required and the order of services provided. Correctness is
taken into account to check whether the specified design decisions meet the desired system
specifications (e.g., deadlock, race condition, or any user-defined properties). Finally, com-
patibility is about checking that software specifications conform to any architectural style
or design guidelines.

As shown in Table 6, none of the modeling languages for IoT is supported with a tool
that can analyze the models for all the analysis goals considered. The most preferred analy-
sis goals are consistency (in 17 languages) (77%) and completeness (in 14 languages) (64%).
Accuracy and compatibility targets are addressed by three (14%) languages each. There
are two languages (Centurión et al. [90] and COMFIT [91]) that support completeness, con-
sistency, and correctness at the same time, while only one language (ThingML [22,84–86])
supports completeness, consistency, and compatibility. Other languages support two or
less features.

During the examinations on modeling languages for IoT, other requirements which
these languages commonly support emerged. These are simulation, model checking,
deadlock checking, and reachability. Simulation is to do with executing a software model
to determine any wrong sequences of actions and wrong change of system state. Model
checking (or theorem proof) is performed by model checking tools (or theorem provers)
that rely on mathematical proofs and allow for comprehensive analysis of the models
so as to prove the correctness of models for some properties. Indeed, model checkers
can check each state a system can be in at any time for any features of interest. Note
that although the simulation shows system execution in a single path of the system state
space, model checkers check all system paths. Deadlock is a property used to check if any
system with concurrently executing components has entered into a deadlock state, where
each component gets blocked and expects a response from another component that will
never happen. Reachability is another popular property for checking a system state that is
never reached during system execution and reveals any part of behavior models that is not
working as expected.

Table 7 shows the modeling languages that support each of these model analysis
requirements discussed in the above paragraph. Model checking is the most popular
analysis technique supported by ten languages (77%). Some languages use their own
built-in model checkers, while others use model checkers such as nuXmv [134] (used
by UML4IoT [37,87,88], BRAIN-IoT [102], and MAF [121]) and EMFeR [135] (used by
IoTLink [37,112,113] and FogUML2Code [43]). Note that these languages basically provide
translation of software features in the input language of model controllers. Additionally,
nine out of thirteen languages (69%) were found to support deadlock detection via the
model checkers they support. Five languages support simulation; most of them basically
support model checkers with simulation capability (SPIN [136] and FSP [137]). Finally,
reachability analysis is only considered by ENACT DevOps [119].
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Table 6. The modeling languages for IoT that support the model analysis for the completeness,
consistency, correctness, and compatibility properties.

Language Completeness Consistency Correctness Compatibility

DSML4TinyOS [81–83] Yes Yes NA NA

ThingML [22,84–86] Yes Yes NA Yes

UML4IoT [36,87,88] NA NA NA Yes

IoT-PML [89] NA NA NA Yes

Centurión et al. [90] Yes Yes Yes NA

COMFIT [91] Yes Yes Yes NA

HSML [92] NA Yes NA NA

IoTDraw and
SoaML4IoT [93,94] NA NA Yes NA

Asici et al. [97] Yes Yes NA NA

Sosa-Reyna et al. [98,99] NA Yes NA NA

BRAIN-IoT [102] Yes Yes NA NA

IADev [103] Yes Yes NA NA

Iovino et al. [104] Yes NA NA NA

Karkouch et al. [111] Yes NA NA NA

IoTLink [37,112,113] Yes Yes NA NA

Vorto [117] Yes Yes NA NA

DivEnact [118] NA Yes NA NA

ENACT DevOps [119] Yes Yes NA NA

FogUML2Code [43] Yes Yes NA NA

Betancourt et al. [120] NA Yes NA NA

MAF [121] Yes Yes NA NA

SecKit [123] NA Yes NA NA

Total 14 17 3 3
Abbreviation: NA, not applicable.

5.3.2. Large-View Management

Large-view management is to do with managing large system models that are com-
posed of many components which make the models difficult to understand and analyze.
Therefore, different techniques such as structural composition (i.e., using composite com-
ponents and connectors whose internal structures can be specified) and inheritance can be
employed for minimizing the complexity by grouping the cohesive set of system compo-
nents together.

According to the analysis results, 27 modeling languages for IoT (84%) were observed
to address the large views. As can be seen in Table 8, the structural composition of
component specifications (i.e., composite components) is the most supported requirement
(66%). The structural compositions of both components and connectors are rarely supported
(19%). Lastly, a few languages (16%) support the structural compositions of components
and inheritance. Inheritance in this study is based on the inheritance principle of the
object-oriented software engineering paradigm [138] and promotes the ability of extending
a component specification with another component specification.



Mathematics 2023, 11, 1263 20 of 35

Table 7. The modeling languages for IoT that support the model analysis via some additional capabilities.

Language Simulation Model
Checking Deadlock Reachability

DSML4TinyOS [81–83] NA Yes Yes NA

ThingML [22,84–86] NA Yes NA NA

UML4IoT [36,87,88] NA Yes Yes NA

COMFIT [91] Yes NA NA NA

IoTDraw and
SoaML4IoT [93,94] Yes NA NA NA

Asici et al. [97] NA Yes Yes NA

Genesis [100,101] Yes NA NA NA

BRAIN-IoT [102] NA Yes Yes NA

IoTLink [37,112,113] NA Yes Yes NA

Vorto [117] NA Yes Yes NA

ENACT DevOps [119] Yes Yes Yes Yes

FogUML2Code [43] NA Yes Yes NA

MAF [121] NA Yes Yes NA

Total 5 10 9 1
Abbreviation: NA, not applicable.

5.3.3. Versioning

Versioning support is about maintaining and accessing different versions of software
features. Only one modeling language for IoT, Vorto [117], supports versioning. This
language mainly offers the use of repositories through modeling editors. Repositories can
be used to store any supported architectural element (e.g., components and connectors),
version these elements, access the versions needed, and reuse the versions to create different
system configurations.

5.3.4. Knowledge Management

We consider knowledge management in terms of the availability of a website that
can enable access to a set of artifacts including a language’s (1) introduction, (2) tutorials,
(3) toolset installation and download link, (4) user manual, (5) case studies, (6) publications,
(7) mailing list, (8) membership, and (9) contact information.

The introduction support is to do with informing practitioners about the language. Tu-
torials refer to the usage guidelines of the language. The toolset requirement enables access
to the language’s tool itself. The user manual requirement is to do with the installation and
usage information for practitioners. The case studies present the demonstrations of using
the language and its toolset. Publications refer to the papers introducing the language
features. The mailing list requirement is to do with any social platform through which
practitioners exchange ideas about their questions on the language, toolset, and modeling.
Membership means that there is a tool membership opportunity. Contact describes the
existence of people who can be contacted for the language.

Table 9 gives the six modeling languages for IoT (19%) that have public websites. A
careful examination of the websites of these languages identified a number of requirements
that the websites (at least partially) support. These include tutorials, a toolset, a user manual,
case studies, publications, a mailing list, membership, and contact info. Table 10 groups
the modeling languages for IoT in terms of a set of knowledge management requirements.
While some languages are not supported with websites, those languages still enable access
to some of the information considered in our study through their publications and some
repositories (e.g., GIT).
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Table 8. The modeling languages for IoT that support large-view management.

Language Large-View Management Techniques

DSML4TinyOS [81–83] Structural composition (components)

ThingML [22,84–86] Structural composition (components and connectors)

UML4IoT [36,87,88] Structural composition (components)

IoT-PML [89] Structural composition (components) and inheritance

Centurión et al. [90] Structural composition (components)

HSML [92] Structural composition (components)

IoTDraw and SoaML4IoT [93,94] Structural composition (components) and inheritance

Alulema et al. [44] Structural composition (components)

EL4IoT [95,96] Structural composition (components)

Asici et al. [97] Structural composition (components)

Sosa-Reyna et al. [98,99] Structural composition (components)

Genesis [100,101] Structural composition (components)

BRAIN-IoT [102] Structural composition (components and connectors)

IADev [103] Structural composition (components) and inheritance

IoTSuite [105,106] Structural composition (components)

Vitruvius [107] Structural composition (components)

Midgar [108,109] Structural composition (components)

Schachinger and Kastner [110] Structural composition (components)

IoTLink [37,112,113] Structural composition (components)

SysML4IoT [114,115] Structural composition (components and connectors)

FRASAD [116] Structural composition (components)

Vorto [117] Structural composition (components) and inheritance

DivEnact [118] Structural composition (components and connectors)

ENACT DevOps [119] Structural composition (components)

FogUML2Code [43] Structural composition (components and connectors)

MAF [121] Structural composition (components)

SecKit [123] Structural composition (components) and inheritance

Table 9. The modeling languages for IoT that have accessible websites.

Language Websites Last Access Date

UML4IoT [36,87,88] https://sites.google.com/site/uml4iot/ 25 December 2022

BRAIN-IoT [102] https://www.brain-iot.eu/ 26 December 2022

IoTSuite [105,106] https://bosch-iot-suite.com/ 24 December 2022

IoTLink [37,112,113] https://iotlink.gitlab.io/ 25 December 2022

Vorto [117] https://www.eclipse.org/vorto/ 27 December 2022

ENACT DevOps [119] https://www.enact-project.eu/ 26 December 2022

https://sites.google.com/site/uml4iot/
https://www.brain-iot.eu/
https://bosch-iot-suite.com/
https://iotlink.gitlab.io/
https://www.eclipse.org/vorto/
https://www.enact-project.eu/
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Table 10. The modeling languages for IoT that support the knowledge management requirements.

Language Introduction Tutorials Toolset User
Manual

Case
Studies Publication Mailing

List Membership Contact

DSML4TinyOS [81–83] Yes NA Yes NA Yes Yes NA NA NA

ThingML [22,84–86] Yes Yes Yes Yes Yes Yes NA NA Yes

UML4IoT [36,87,88] Yes Yes Yes Yes Yes Yes NA NA Yes

IoT-PML [89] Yes Yes Yes Yes Yes Yes NA NA NA

Centurión et al. [90] Yes NA NA NA Yes Yes NA NA NA

COMFIT [91] Yes Yes Yes NA Yes Yes NA NA NA

HSML [92] Yes NA Yes NA Yes Yes NA NA NA

IoTDraw and
SoaML4IoT [93,94] Yes Yes Yes Yes Yes Yes NA NA Yes

Alulema et al. [44] Yes NA Yes NA Yes Yes NA NA NA

EL4IoT [95,96] Yes NA Yes NA Yes Yes NA NA NA

Asici et al. [97] Yes NA Yes NA Yes Yes NA NA NA

Sosa-Reyna et al. [98,99] Yes NA Yes NA Yes Yes NA NA NA

Genesis [100,101] Yes NA Yes NA Yes Yes NA NA NA

BRAIN-IoT [102] Yes Yes Yes Yes Yes Yes Yes Yes Yes

IADev [103] Yes Yes Yes NA Yes Yes NA NA NA

Iovino et al. [104] Yes NA Yes NA Yes Yes NA NA NA

IoTSuite [105,106] Yes Yes Yes Yes Yes Yes NA NA Yes

Vitruvius [107] Yes NA Yes NA Yes Yes NA NA NA

Midgar [108,109] Yes NA Yes NA Yes Yes NA NA NA

Schachinger and
Kastner [110] Yes NA Yes NA Yes Yes NA NA NA

Karkouch et al. [111] Yes NA Yes NA Yes Yes NA NA NA

IoTLink [37,112,113] Yes NA Yes NA Yes Yes NA NA NA

SysML4IoT [114,115] Yes NA Yes NA Yes Yes NA NA NA

FRASAD [116] Yes NA Yes NA Yes Yes NA NA NA

Vorto [117] Yes Yes Yes Yes Yes Yes Yes Yes Yes

DivEnact [118] Yes NA Yes NA Yes Yes NA NA NA

ENACT DevOps [119] Yes Yes Yes Yes Yes Yes NA NA Yes

FogUML2Code [43] Yes NA Yes NA Yes Yes NA NA NA

Betancourt et al. [120] Yes NA Yes NA Yes Yes NA NA NA

MAF [121] Yes NA Yes NA Yes Yes NA NA NA

Hassine et al. [122] Yes NA Yes NA NA Yes NA NA NA

SecKit [123] Yes NA Yes NA Yes Yes NA NA NA

Abbreviation: NA, not applicable.

The mailing list support and membership support are the least supported requirements
among the languages analyzed. On the other hand, almost all languages have introduction
artifacts, publications, toolsets, and case study information.

The two languages that support most of the knowledge management requirements
are BRAIN-IoT [102] and Vorto [117]. Both languages come with introduction material,
tutorials, a toolset, a user manual, case studies, publications, a mailing list, membership,
and contact information.

The three modeling languages for IoT are limited by supporting only three knowledge
management requirements. These languages and their supporting features are: (1) Cen-
turión et al. [90]: introduction, case studies, and publications; (2) Sosa-Reyna et al. [98,99]:
introduction, case studies, and publications; and (3) Hassine et al. [122]: introduction,
toolset, and publications.
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5.3.5. Software Architecture-Centric Design

For architecture-centric design, we analyzed the modeling languages and their tools
for a set of features that we believe promote an architecture-centric design. These are
(1) requirements modeling (e.g., use-case modeling); (2) traceability between requirements
and architecture; (3) the automated analysis of architecture models for the requirement
specifications; (4) the automated generation of code from the architecture models; and
(5) reverse engineering (from code to architecture). Table 11 lists these features and the
languages that support those features. Requirements modeling (34%) is the most supported
feature among the languages. The support ratio for the automated analysis of the architec-
ture for requirements is 9%. The support ratios for reverse engineering and the automated
generation of code from the architecture are both 6%. None of the languages supports
traceability between requirements and architecture.

Table 11. The modeling languages for IoT that support software architecture-centric design features.

Features Languages

Requirements modeling

UML4IoT [36,87,88], IoT-PML [89], Centurión et al. [90],
COMFIT [91], IoTDraw and SoaML4IoT [93,94],

BRAIN-IoT [102], IADev [103], Karkouch et al. [111],
SysML4IoT [114,115], FRASAD [116], SecKit [123]

The automated analysis of
architecture for requirements COMFIT [91], IADev [103], Karkouch et al. [111]

The automated generation
of code from architecture UML4IoT [36,87,88], COMFIT [91]

Reverse engineering DSML4TinyOS [81–83], UML4IoT [36,87,88]

5.3.6. Collaboration

Teamwork should be an essential part of software development to develop high-quality
software systems within expected time and budget constraints. Teamwork requires a group
of people to work collaboratively on the same project, which reduces development time and
improves product quality [139]. Collaboration within the human team can be synchronous
or asynchronous. Synchronous collaboration requires users to simultaneously work on
software features while they may be in physically different locations. In asynchronous
collaboration, different users can work on specifications at different times that best fit their
schedules. It was seen in this research that two languages (6%) provide both synchronous
and asynchronous collaborations. These are Vorto [117] and ENACT DevOps [119].

6. Discussion

In Section 5, the analysis of 32 modeling languages for IoT was presented in terms
of their support for three categories of requirements (i.e., language definition, language
features, and tool support). Table 12 gives the overall analysis results for the IoT-based mod-
eling languages. None of the IoT-based modeling languages supports all the requirements
of language definition, language features, and tool support together.

We observed that the modeling languages for IoT provide different levels of support
for the requirements in the different categories considered. Indeed, while one language
supports a number of viewpoints for modeling, another one supports just two modeling
viewpoints. Likewise, while one language supports various properties to be analyzed,
another one just supports simulation. It should also be noted that such requirements as
formal semantics, extensibility, and multi-user access (i.e., versioning and collaboration)
are rarely supported. Vorto [117] can, for instance, be considered as supporting the greatest
number of requirements while suffering from an informal semantics definition and a
small number of modeling viewpoints supported (logical and behavior). IoTDraw and
SoaML4IoT [93,94] support most requirements including formal semantics and extensibility
but do not support versioning and collaboration features.
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Table 12. The overall analysis results of the modeling languages for all the requirements considered.

Language
Requirements:

Language Definition Language Features Tool Support

NonFunc Req NotSet RY ForSem MulView ExMec ExtType ProgFrame Automated
Analysis LVM Col Ver Knowledge

Management S-C

DSML4TinyOS [81–83] Per GN 2018 IS Phy, Dep, Log NA NA ACG—nesC MC, Dead—Comp,
Cons Yes NA NA Int, Tool, CS, Pub Yes

ThingML [22,84–86] Per, Sc, Rel GN 2016 IS Phy, Log,
Dep, Beh NA NA ACG—C/C++,

Java, JavaScript
MC—Comp, Cons,

Compa, Yes NA NA
Int, Tut, Tool,
UM, CS, Pub,

Con
Yes

UML4IoT [36,87,88] Per, Rel, Sec,
Time, RC GN 2016 IS Phy, Dep, Log NA NA ACG—C, Java MC, Dead—Compa Yes NA NA

Int, Tut, Tool,
UM, CS, Pub,

Con
Yes

IoT-PML [89] Gen GN 2019 IS Phy, Dep, Log GCD Syntax ACG—Java Compa Yes NA NA Int, Tut, Tool,
UM, CS, Pub Yes

Centurión et al. [90] Sec, Sca GN 2019 IS Phy, Dep, Log NA NA ACG—pp conf. Comp, Cons, Corr Yes NA NA Int, CS, Pub Yes

COMFIT [91] Per, Rel, Sec,
Por, RC GN 2017 IS Phy, Dep, Log,

Beh NA NA ACG—nesC,
JavaScript

Sim—Comp, Cons,
Corr NA NA NA Int, Tut, Tool, CS,

Pub Yes

HSML [92] Per, RC
FSM
and

HTML
2019 IS Phy, Dep,

Beh NA NA ACG—
JavaScript Cons Yes NA NA Int, Tool, CS, Pub Yes

IoTDraw and
SoaML4IoT [93,94] Gen GN 2020 fUML Phy, Dep, Log InExt Syntax ACG—Java Sim—Corr Yes NA NA

Int, Tut, Tool,
UM, CS, Pub,

Con
Yes

Alulema et al. [44] Gen GN 2017 IS Phy, Dep, Log NA NA ACG—C, Java NA Yes NA NA Int, Tool, CS, Pub Yes

EL4IoT [95,96] Gen GN 2017 IS Phy, Dep,
Beh, Log NA NA ACG—nesC,

XML NA Yes NA NA Int, Tool, CS, Pub Yes

Asici et al. [97] Per GN 2019 Petri
net Phy, Dep, Log NA NA ACG—C, Java MC, Dead—Comp,

Cons Yes NA NA Int, Tool, CS, Pub Yes

Sosa-Reyna et al. [98,99] Gen GN 2018 IS Phy, Dep, Log NA NA ACG—nesC Cons Yes NA NA Int, CS, Pub Yes

Genesis [100,101] Gen GN 2019 IS Phy, Dep, Log NA NA ACG—C/C++,
Java, JavaScript Sim Yes NA NA Int, Tool, CS, Pub Yes

BRAIN-IoT [102] Per, Sec, RC GN 2019 IS Phy, Dep, Log,
Beh NA NA ACG—Java,

Man. Script
MC, Dead—Comp,

Cons Yes NA NA
Int, Tut, Tool,
UM, CS, Pub,

ML, Mem, Con
Yes

IADev [103] Per, Rel, Sca GN 2020 IS Phy, Dep, Log NA NA ACG—Java,
JavaScript Comp, Cons Yes NA NA Int, Tut, Tool, CS,

Pub Yes

Iovino et al. [104] Sec, Ava GN 2019 IS Phy, Log,
Dep, Beh NA NA ACG—Java Comp NA NA NA Int, Tool, CS, Pub Yes

IoTSuite [105,106] Sca GN 2015 IS Phy, Dep, Log NA NA ACG—Java NA Yes NA NA
Int, Tut, Tool,

UM, CS,
Pub, Con

Yes
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Table 12. Cont.

Language
Requirements:

Language Definition Language Features Tool Support

NonFunc Req NotSet RY ForSem MulView ExMec ExtType ProgFrame Automated
Analysis LVM Col Ver Knowledge

Management S-C

Vitruvius [107] Gen GN 2014 IS Phy, Dep, Log NA NA ACG—
JavaScript NA Yes NA NA Int, Tool, CS, Pub Yes

Midgar [108,109] Gen GN 2014 IS Phy, Dep, Log NA NA ACG—C, Java,
C#, Obj-C NA Yes NA NA Int, Tool, CS, Pub Yes

Schachinger and
Kastner [110] Gen GN 2015 IS Phy, Dep, Log NA NA ACG—Java NA Yes NA NA Int, Tool, CS, Pub Yes

Karkouch et al. [111] Gen GN 2016 IS Phy, Dep, Log NA NA ACG—Java Comp NA NA NA Int, Tool, CS, Pub Yes

IoTLink [37,112,113] Per GN 2014 IS Phy, Dep, Log NA NA ACG—Java MC, Dead—Comp,
Cons Yes NA NA Int, Tool, CS, Pub Yes

SysML4IoT [114,115] Gen GN 2016 IS Phy, Log,
Dep, Beh NA NA ACG—Java NA Yes NA NA Int, Tool, CS, Pub Yes

FRASAD [116] Por GN 2015 IS Phy, Dep, Log NA NA ACG—C/C++,
Java NA Yes NA NA Int, Tool, CS, Pub Yes

Vorto [117] Gen TN 2016 IS Logical, Beh JExt NA ACG—C/C++,
Java, Python

MC, Dead—Comp,
Cons Yes Yes NSM

Int, Tut, Tool,
UM, CS, Pub,

ML, Mem, Con
Yes

DivEnact [118] Rel GN 2019 IS Phy, Log,
Dep, Beh NA NA ACG—conf. file Cons Yes NA NA Int, Tool, CS, Pub Yes

ENACT DevOps [119] Gen GN 2018 IS
Phy, Dep,
Beh, Log,

Info
NA NA ACG—C/C++,

Java, JavaScript
MC, Dead, Sim,

Reac- Comp, Cons Yes Yes NA
Int, Tut, Tool,
UM, CS, Pub,

Con
Yes

FogUML2Code [43] Sec GN 2019 IS Phy, Dep, Log NA NA ACG—C, Java MC, Dead—Comp,
Cons Yes NA NA Int, Tool, CS, Pub Yes

Betancourt et al. [120] Gen GN 2020 IS Phy, Dep, Log NA NA ACG—conf. file Cons NA NA NA Int, Tool, CS, Pub Yes

MAF [121] Gen GN 2020 IS Phy, Dep, Log NA NA ACG—Java,
JSON, Obj-C

MC, Dead—Comp,
Cons Yes NA NA Int, Tool, CS, Pub Yes

Hassine et al. [122] Gen GN 2017 IS Phy, Dep, Log NA NA ACG—Java NA NA NA NA Int, Tool, Pub Yes

SecKit [123] Per, Sec Tree N. 2014 LTL Log, Beh NA NA ACG—C/C++,
Java Cons Yes NA NA Int, Tool, CS, Pub Yes

Abbreviations: ACG: automated code generation, Ava: availability, Beh: behavior, Col: collaboration, Compa: compatibility, Comp: completeness, Cons: consistency, Con: contact, Corr:
correctness, CS: case studies, Dead: deadlock, Dep: deployment, ExMec: extension mechanism, ExtType: extension types, ForSem: formal semantics, GCD: generic concept definition,
Gen: general, GN: graphical notation, InExt: (i) creating new attributes, (ii) specializing existing elements, (iii) implementing user-defined execution modules, Info: information, Int:
introduction, IS: informal semantics, JExt: extension for reusing and specializing model elements such as Java, LTL: Linear Temporal Logic, Log: logical, Mem: membership, MulView:
multiple viewpoints, MC: model checking, ML: mailing list, NA: not available, NonFunc Req: nonfunctional requirements, NotSet: notation sets, NSM: namespace management, RC:
resource consumption, LVM: large-view management, RY: release year, Per: Performance, Phy: physical, Por: portability, ProgFrame: programming framework, Pub: publication, Reac:
reachability, Rel: reliability, S-C: software architecture-centric design, Sca: scalability, Sc: schedulability, Sec: security, Sim: simulation, Time: timeliness, TN: textual notation, Tool: toolset,
Tut: tutorials, UM: user Manuel, Ver: versioning.
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The reminder of this section presents the implications and lessons learned for each
requirement category considered in our study. The threats to the validity of the conducted
study is also given in Section 6.4.

6.1. Language Definition

As discussed in Section 5.1.1, the support for the nonfunctional requirements is quite
common among the modeling languages for IoT. The languages support the specifications
of some quality properties through some notations. Note, however, that the support for
the nonfunctional properties such as schedulability, timeliness, and availability, which are
highly crucial for the IoT domain, is very limited. UML4IoT [36,87,88] and COMFIT [91] are
the two languages that provide the widest range of nonfunctional property specifications.
While many languages support the specifications of nonfunctional properties (especially
the performance properties), none of them enables processing those specifications via
some tool support. Considering the ever-increasing importance of quality checking in
IoT systems (especially for time performance and availability), the lack of support for the
nonfunctional property analysis could limit the use of the existing modeling languages for
IoT. Thus, future modeling languages for IoT can address this issue and provide syntax
and semantics support for the precise specifications of nonfunctional properties and their
analysis via some tool support for the detection of design errors early on.

Another implication about the language definition is that the modeling languages
for IoT lack support for the formal and precise semantic definitions—the only exceptions
are IoTDraw and SoaML4IoT [93,94], Asici et al. [97], and SecKit [123]. The lack of such
definitions could, however, lead to communication problems where the model specifica-
tions can be interpreted differently by different stakeholders, and thus wrong systems
can be developed in the end. Another problem here is to do with reasoning about the
design decisions at the modeling stage. Imprecise (i.e., ambiguous) models cannot be
analyzed rigorously. Indeed, analyzing (and even proving) the behavior models via some
formal verification tools (e.g., model checkers) requires translation from modeling language
definitions into the model checking tools’ input language definition, and that could be
possible if the modeling languages were supported with precise definitions. It should also
be noted that the model behavior analysis is very important for the IoT domain due to the
heterogeneity and high complexity of IoT systems. So, we strongly believe that the new
languages to be defined for the IoT domain should be supported with precise definitions for
the enhanced communication and rigorous analysis of models without which the models
cannot be very useful for the development of quality systems.

6.2. Language Features

As discussed in Section 5.2.1, the modeling languages for IoT support multiple-
viewpoints modeling for the understandable and manageable specifications of design
decisions. Indeed, the physical, deployment, and logical concerns are the most popular
viewpoints. However, one important implication is that the information and concurrency
modeling viewpoints are rarely supported by the IoT-based modeling languages. That is,
making decisions about information-related issues (e.g., data flow, data structure, and data
state changes) and concurrency-related issues (e.g., deadlock avoidance, synchronization,
threads, and processes) are not within the scope of many languages. It should be noted
that information and concurrency concerns are highly crucial for the development of IoT
systems, and making early design decisions and reasoning about them are thus very impor-
tant for IoT development. Therefore, language engineers and tool vendors can consider
those features in the future during their language and tool development for enabling the
early modeling of such decisions that can even be analyzed with some tool support.

Concerning the programming framework support, we learned that the IoT-based
modeling languages do not support pattern-centric modeling, including the ability of
defining patterns, reusing user-defined/pre-defined patterns in model specifications, and
merging different models in the same model. Moreover, the languages do not support



Mathematics 2023, 11, 1263 27 of 35

the use of any repositories that promote the reuse of models or model elements (e.g.,
components and connectors). However, without the use of patterns or the support for
reusability in models, practitioners cannot always make the optimal design decisions as
quickly as possible and therefore develop quality IoT systems within the expected time
and budget.

The extensibility feature is only supported by IoT-PML [89], IoTDraw and
SoaML4IoT [93,94], and Vorto [117]. IoT-PML and IoTDraw and SoaML4IoT [93,94] focus
on extending the language definition (i.e., language syntax and semantics) under some re-
strictions that prevent violating the metamodel rules. Extending tools is only supported by
Vorto, which provides the development libraries for developing and integrating code gener-
ators and transformation tools. Most languages cannot be extended at all, and practitioners
have to use the existing notation set and tools as they are.

We strongly believe that for any language to be widely used in industry, it needs to
support (i) multiple modeling viewpoints that enable addressing the principal concerns
in that industry separately and thus more understandably, (ii) reusability in modeling via
patterns and libraries for quick and quality modeling, and (iii) extensibility for extending
the language and tools for the needs of specific problems encountered. Unfortunately,
none of the existing IoT-based modeling languages seems to satisfy all those requirements,
and we hope that new languages and tools to be developed in the future can address
those requirements.

6.3. Tool Support

As discussed in Section 5.3.1, many of the modeling languages for IoT support the au-
tomated analysis of models. While some languages are supported with tools for analyzing
models with regard to the four important analysis goals (i.e., completeness, consistency,
correctness, and compatibility), some languages are supported with tools that enable model
checking for deadlock detection. Note, however, that while checking model consistency and
model completeness are supported by many language tools, checking model compatibility
for, e.g., architectural styles, is rarely supported. ThingML [22,84–86], UML4IoT [36,87,88],
and IoT-PML [89] are the only languages that support compatibility analysis. A few
language tools support model simulation too. However, those that support model simula-
tion ignore model checking (i.e., formal verification)—the only exception here is ENACT
DevOps [119].

Another interesting implication about tool support is that all the modeling languages
for IoT are supported with tools for automated code generation. Java is the most popular
programming language, followed by C and JavaScript. Moreover, some language tools sup-
port multiple programming languages for code generation. Indeed, ThingML [22,84–86],
Genesis [100,101], and ENACT DevOps [119] support C, C++, Java, and JavaScript at the
same time.

Large-view management is also supported by most of the modeling languages for
IoT. While all of those languages enable the structural composition of components, IoT-
PML [89], IoTDraw and SoaML4IoT [93,94], IADev [103], SecKit [123], and Vorto [117]
further support the inheritance capability for the modeling elements where the modeling
elements may be specified by specializing other existing elements.

The IoT-based modeling languages ignore model versioning and collaborative model-
ing for the multi-user access support. The only exceptions here are Vorto [117] and ENACT
DevOps [119]. The rest of the languages do not enable (i) versioning models, (ii) comparing
model versions, and (iii) multiple users to access the model versions at the same time.
However, without versioning and multi-user access, modeling tools may not be applicable
to the industrial cases where a single solution needs to be revised in several versions by
different stakeholders collaboratively.

The architecture-centric design is another interesting requirement for tool support.
While all the languages support the specifications of system architectures for IoT, not
all of them enable the specifications of requirements and linking requirements with the
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architecture models and reasoning about the relationship here. Indeed, some languages
support the requirements specifications too, but none of those languages is supported
with the tools for establishing the traceability between requirements and architecture and
making the necessary checks.

Knowledge management is supported by the languages to some extent. However,
while it is possible to obtain different types of knowledge about the languages and tools
(e.g., tutorials, case studies, publications, user manuals, toolsets, contact info, etc.), most
languages are not supported with proper webpages where all the information can be
accessed easily from a single resource.

Concerning the tool support of the modeling languages analyzed, Vorto [117] and
ENACT DevOps [119] are the two that provide stronger tool support in terms of the
requirements considered. ENACT DevOps [119] has a broad automated analysis support.
Both Vorto [117] and ENACT DevOps [119] also support some collaboration features. Note,
however, that ENACT DevOps [119] does not provide versioning support. Lastly, both
languages offer extensive knowledge management via proper webpages.

6.4. Threats to Validity

As is the case in any analysis study, there may be some internal, external, construct,
and conclusion threats to the validity of the findings in this study.

Internal validity is concerned with the causal relationships between the results of
the analysis and any independent variable (i.e., cause) that leads to the results [140]. The
goal here is to ensure that the analysis results are derived from the language requirements
considered, and that unknown independent variables do not affect the results.

In this study, nonprobabilistic sampling was used, and the modeling languages for
IoT to be analyzed were chosen non-randomly. That is, the languages were searched on
the Internet and many different academic databases. In addition, the languages were
analyzed for three groups of requirements: language definition, language features, and
tool support. The requirements here are based on the research by Lago et al. [44]. Note
that some requirements that are not precise enough on their own were broken down into
sub-requirements (see Figure 2). In this way, we aimed to obtain more precise analysis
results. The parsing here is performed using definitions from Lago et al. [45] and definitions
of concepts from the seminal book by Taylor et al. [77].

The analysis of the languages for the specified requirements was performed by two
researchers experienced in IoT software. Thus, we aimed to prevent instrumentation biases
that may occur in case of a change in the researchers collecting and analyzing the data,
and this change affects the analysis results due to the changing profiles of the researchers.
As discussed in Section 4, the authors systematically conducted the analysis in several
iterations. Initially, supporting materials for each language were reviewed, including
publications, tutorials, and tools, to gain some familiarity with the languages. Then, in
another iteration, the languages’ supporting materials were reviewed to determine the
level of support for those requirements. This process was repeated in exactly the same way
to detect any inconsistencies.

External validity threats concern the generalizability of the analysis results, that is, the
degree to which the examined studies are representative of the reviewed topic [140]. The
set of modeling languages analyzed in our study may not be representative of the entire
set of all existing studies on the modeling languages for IoT applications. However, this
threat was mitigated by an extensive search of the related documents using popular search
engines and academic publication repositories as discussed in Section 4. These documents
consist of scientific papers, technical reports, theses, and user manuals. Further, the
languages’ websites were visited, and available modeling tools supporting these languages
were carefully examined. Moreover, all collected materials were analyzed by all authors
separately using a set of previously determined requirements. Only studies in English were
included. Papers written in other languages concerning the same topic may exist. However,
this threat is considered as having minimal effect.
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Construct validity relates to how well an analysis helps in achieving the research
objective. Our goal was to analyze existing modeling languages for IoT to see to what
extent these languages are useful in IoT application development. For this purpose, we used
three groups of language requirements which are well known and were previously used
in different analysis and/or evaluation studies in various software engineering domains.
As also discussed in Section 4, the analyzed data were compared, existing inconsistencies
were determined, and these parts were re-analyzed together with all authors until they
reached a consensus on them. This method also contributed to minimizing the risk to
the construct validity of the conducted research. Additionally, we needed to ensure that
all relevant studies on the selected topic were found adequately. Both MDE and IoT are
well-established concepts, and thus these terms were good enough to be used as keywords.
Therefore, to mitigate this risk, the search of the existing studies through several iterations
was formed, and adequate coverage of the literature was achieved. It is worth noting that
we excluded the previous surveys and reviews during these iterations as is usual in many
systematic reviews. Although that may have caused us to skip some relevant primary
studies discussed in these secondary studies, we determined that the wide coverage of our
paper identification and screening processes already enabled us to consider all relevant
primary studies also discussed in these previous secondary studies.

To alleviate the conclusion validity threat, the research methodology of this study was
designed and validated carefully to minimize the risk of excluding relevant studies. Benefit-
ing from our previous experience of conducting other surveys and SLRs (e.g., [23,68,141]),
the search methodology for the IoT modeling languages was formalized and applied in a
way that only a very small number of relevant studies could be missed, and a manageable
quantity of irrelevant studies could be included. Finally, the analysis of the languages led
to many interesting findings for each set of requirements that are expected to be very useful
to IoT developers.

7. Conclusions and Future Work

The aim of this study was to analyze existing modeling languages for IoT to under-
stand their support for requirements that are important for practitioners. We considered
32 different languages and analyzed each language for three sets of requirements, i.e.,
language definition, language features, and tool support. The language definition require-
ments are concerned with the (1) nonfunctional features, (2) notation set type (i.e., textual,
visual, and hybrid), and (3) formal semantics. Language features are concerned with the
(1) multiple viewpoints, (2) extensibility, and (3) programming framework. Finally, tool
support is concerned with (1) automated analysis, (2) large-view management, (3) collabora-
tion support, (4) versioning support, (5) knowledge management support, and (6) software
architecture-centric design.

Some of the key findings of our analysis include: (1) among many quality properties,
performance is the most popular one, supported by 28% of the languages; (2) almost all
the languages provide a visual notation set exclusively, while 6% provide both textual
and visual notation sets; (3) most of the languages (88%) lack formally precise semantic
definitions; (4) most languages (94%) support the physical, deployment, and logical mod-
eling viewpoints, while the behavior, logical, and information modeling viewpoints are
rarely supported; (5) almost none of the languages support the extensibility of language
syntax, semantics, and tool support; (6) Java (34%) and C (21%) are the most preferred pro-
gramming languages in transforming models into code; (7) among the analysis properties
considered, consistency (77%) and completeness (64%) are the most supported properties
for automated checking; and (8) most of the languages (81%) are not supported with any
websites for informing practitioners about case studies, source code, tools, tutorials, etc.
Our results can serve as a guide when using or developing modeling languages for IoT.
Users can consider these comparisons to select the most appropriate modeling language
for their IoT system development purposes, while language developers, academic groups,
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and vendors will benefit from the analysis results in improving modeling features of in-use
or future languages and tools.

In the future, we will validate the analysis results through a set of companies that
produce IoT-based solutions. We will organize a series of interviews with the practitioners
so as to understand their thoughts about the analysis results discussed in this paper, the
properties that interest them in an IoT-based language, which of the IoT-based languages
analyzed they prefer to use, the reasons behind their choice(s), and their suggestions for
further analytical studies on these languages. Moreover, we also plan to design and execute
a practitioner survey by taking into consideration the analysis results discussed in this
paper. In this survey study, we will try to understand the IoT practitioners’ perspectives on
modeling, modeling languages, their expectations, and any difficulties faced during the
IoT system development. Another future study could be on designing and developing a
new domain-specific language for IoT where such crucial properties as extensibility and
hybrid notation set that are ignored by most of the existing languages can be addressed.
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