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Abstract

In many cases, developers face challenges while implementing Multi-Agent Sys-

tems (MAS) due to the complexity of expanding software systems, despite the pres-

ence of numerous agent programming environments and platforms. To tackle this

complexity, Model-driven Engineering (MDE) can be employed at a higher level of

abstraction and component modeling before diving into MAS development, which

helps alleviate the intricacies. Probably, the most effective method of incorporating

MDE into Multi-Agent Systems (MAS) is to adapt Domain-Specific Modeling Lan-

guages (DSMLs) along with integrated development environments (IDEs). These

tools make it easier to model the system and generate the necessary code for the

development process. Although existing MAS DSML IDEs offer some control over

systems modeled based on the language’s syntax and semantics, they lack built-in

debugging support. This deficiency leads to uncertainty among agent developers

about the accuracy of models prepared during the design phase. To address this

issue, this study proposes a comprehensive debugging framework (MASDebugFW)

that facilitates the design of agent components within modeling environments. The

framework’s utilization commences with modeling MASs using a design language,

and then converting these design model instances into a runtime model. Follow-

ing that, the runtime model undergoes simulation using an integrated simulator

specifically designed for debugging purposes. Additionally, the framework includes

a simulation environment model and a control mechanism to manage the simula-

tion process effectively. These features further enhance the debugging capabilities
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ofand overall functionality of MASDebugFW. Furthermore, we have qualitatively and

quantitatively evaluated MASDebugFW, subjecting all obtained results to statistical

analysis. The evaluation results show that, on average, the implemented framework

reduces debugging time by around 45%, leading to more efficient debugging pro-

cesses. Moreover, it significantly enhances bug detection and repair capabilities, as

it increases the number of bugs fixed in the models by approximately 50%.

Keywords: Empirical software engineering, Software Debugging, Domain-specific

Modeling Languages, Multi-agent systems, simulation

1. Introduction

As the demands of modern society continue to grow, the reliance on software

systems is increasing day by day. This increasing need and dependence leads to the

complexity of software systems. While mechanical systems and software systems

had limited interaction in the past, current requirements necessitate tight integra-

tion. Multi-agent systems (MAS) are one of the technologies used in the realization

of software systems belonging to environments with such interactions [1].

MASs consist of computer systems called agents, each of which can interact with

others. Agents can perform autonomous actions within an environment to achieve

their design goals [2]. Agents can exhibit complex behavior patterns, ranging from

simple reflexive responses to environmental changes to more proactive decision-

making. Although many different agent programming environments and platforms

such as JACK [3], JADE [4], JADEX [5], and Jason [6] have been developed until today,

software developers still face challenges in dealing with the complexity of imple-

menting MASs caused by the complexity of growing software systems [7, 8].

With the growing complexity of MASs, Agent-oriented Software Engineering (AOSE)

[9] researchers are working to enable development processes, methods, and tech-

niques that allow system developers to successfully address system concerns such

as security, interoperability, and performance. Among these techniques, it is seen

that software modeling and Model-driven Engineering (MDE) [10, 11, 12, 13, 14] are

widely used [15, 16, 8, 17, 18].
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with MDE before going deeper into the MAS development can help reduce the com-

plexity that may arise in the implementation of the MAS [19, 20, 21]. In the devel-

opment processes based on MDE, models are considered to be first-class concepts.

When developing systems according to the MDE process, engineers create models

that reflect discrete parts of the system in various modeling languages and provide

high-level abstraction [22]. In this way, development processes provide abstractions

that allow engineers to focus on what the system should do instead of how the sys-

tem should be implemented. In other words, the MDE allows engineers to focus on

defining the system’s functionality rather than getting caught up in the implemen-

tation details.

AOSE researchers define various agent metamodels [23, 24, 25] to facilitate the

modeling of every relevant aspects of MAS at the most suitable level of abstraction.

These metamodels are designed to encompass agent characteristics like plans and

beliefs, goals, and interactions within MAS organizations. To implement MDE ef-

fectively for MASs, a convenient approach involves tailoring Domain-Specific Mod-

eling Languages (DSMLs) using integrated development environments (IDEs) that

support both modeling and code generation for the targeted system [16]. The pro-

posed MAS DSMLs (e.g., [26, 27, 28, 19, 29, 30]) are based on the mentioned agent

metamodels and offer various abstract syntaxes. These DSMLs facilitate the mod-

eling of both static and dynamic aspects of agent software from different perspec-

tives in the MAS domain, including agent internal behavior, interactions with other

agents, and the utilization of environmental entities. This allows developers in the

MAS field to model systems at the appropriate level of abstraction using the con-

cepts they are most familiar with. However, although DSMLs provide intuitive mod-

eling capabilities and help manage the development process for highly complex sys-

tems, they do not guarantee error-free models [31, 32, 33].

The complexity of MAS modeling cannot be entirely eliminated by using a dif-

ferent development method; however, DSMLs provide an intuitive and domain-

specific approach to system design due to their proximity to field-specific concepts.

Early verification techniques that enable the identification of unmet system require-
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observed, it is necessary to determine why the failure occurred and how to mod-

ify the model to eliminate the cause of the failure. With a good understanding of

the models, the faults that are the reasons of the failures can be found and rectified

manually. Alternatively, a wide variety of debugging techniques (e.g. [34, 35, 36, 37])

can be used to help developers to find and fix the faults [38]. Indeed, the IDEs as-

sociated with these MAS DSMLs do offer checks for systems modeled based on the

syntax and semantic descriptions of the respective DSML. However, a notable limi-

tation is the absence of built-in support for debugging MAS models [39]. As a result,

developers are left uncertain about the accuracy and correctness of the MAS models

prepared during the design stage.

Understanding the runtime behavior of software systems can be a challenging

activity. Debuggers play a crucial role in helping developers comprehend the run-

time behavior by providing direct access to running systems [40, 41, 42]. In the con-

text of software development, debugging support is typically provided with a lan-

guage and IDE that allows monitoring and modifying the status of a running pro-

gram. However, in Domain-Specific Modeling (DSM), debugging activities have a

broader meaning [33]. Model developers must debug the models at the model level,

not at the code level. This new requirement prompts the researchers on developing

new debugging approaches for model-driven development and DSMLs.

Finding the cause of a system’s failure and correcting it can be done manually

with a good understanding of the models. Alternatively, a wide variety of debug-

ging techniques can be used to help developers find the cause of the failure [40].

Since software bugs have a large economic impact [43], it is imperative to provide

such debugging tools and techniques to assist developers as much as possible. With

the boosted importance of MDE techniques for developing complex systems, re-

searchers are increasing the reliability of modeled systems by integrating, inter alia,

verification and validation techniques. However, few debugging tools and tech-

niques are available, especially when it comes to models developed using DSML

(e.g. [34, 35, 37, 44]). To locate the source of a failure observed in a system imple-

mented using models, developers often have to resort to temporary methods. An
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be proposed by reusing well-known debugging techniques built into a DSML IDE.

However, this approach seems extremely problematic since the developer needs to

change the contexts and understand the semantics of the underlying application

language. Moreover, it must perform a conceptual mapping between the code and

the model properly and map the faults on the code to the model entities with this

conceptual mapping. Instead, it is clear that specific debug support is required for

modeling languages [45, 46]. However, although structured approaches to creating

model debugging environments based on language engineering techniques are ex-

tremely limited, debugging support in the modeling of MASs is not yet available in

any study. On the other hand, based on reports and observations[17, 47, 48, 49], it

seems that a significant number of developers of agents rely on basic debugging

techniques, such as using straightforward logging statements, in order to under-

stand the situation at hand. The current agent platforms mainly offer assistance in

examining the cognitive state of an agent [48]. Hence, we investigated some possi-

ble debugging approaches to support MAS DSMLs [39] and also presented the con-

ceptual definition of the MAS metamodels to provide debugging capabilities to MAS

DSMLs [50]. Lastly, in this paper, we introduce a complete general debugging frame-

work that supports the design of agent components within modeling environments

1. Furthermore, MASDebugFW has been evaluated both qualitatively and quantita-

tively. In this context, the contributions of this study can be listed as follows:

• It contributes to the AOSE community and the state of the art in software en-

gineering by discussing how a MAS debugging framework can be constructed

by enhancing the present design structures of existing MAS DSMLs with sup-

plementary runtime, simulation, and visualization languages.

• It introduces a framework for creating a completely new MAS DSML with de-

bugging support and its implementation method. The proposed framework is

1To provide additional clarity and demonstrate the usability of MASDebugFW, a video walkthrough is

available and can be accessed at https://youtu.be/3MKDgob9ij4.

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofhighly versatile, as it caters to the design of both agent internals and commu-

nications. Its flexibility opens avenues for developing MAS DSMLs equipped

with built-in debuggers. Moreover, a new debug-supported MAS DSML de-

veloped by MASDebugFW is also presented in this study to demonstrate the

applicability of this framework.

• It presents an evaluation method that has been developed and implemented

to verify the effectiveness ofMASDebugFW. With the quantitative assessment

performed, the effectiveness of the new debugging framework in time con-

sumption, the true localization of faults, accurate diagnosis of faults, and ac-

ceptable corrections at the modeling level were confirmed. In addition, an ex-

panded qualitative assessment model from the Technology Acceptance Model

(TAM) [51] was developed to demonstrate the acceptance of this framework,

and the framework was evaluated according to this model.

The rest of the paper is organized as follows. Section 2 provides a theoretical

foundation, including background information on debugging in MAS and an overview

of MASDebugFW. Section 3 provides a comprehensive explanation of MASDebugFW,

detailing its design and implementation for enriching DSMLs with advanced debug-

ging capabilities tailored for MAS models. Section 4 presents the case study, demon-

strating the practical applicability of MASDebugFW by showcasing its effectiveness

in identifying and resolving faults within a real-world MAS scenario. Practical re-

searchers and developers may prefer to start with Section 4. For readers primarily

interested in the technical evaluation of the framework, Section 5 offers quantita-

tive and qualitative assessments of its performance. Section 6 discusses the threats

to the validity of this work. Lastly, Section 7 finalizes the paper with discussion and

conclusions. Depending on their focus, readers can choose to dive deeper into theo-

retical discussions (Sections 2 and 3) or practical applications and evaluations (Sec-

tions 4 and 5).
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of2. Related Work

Software debugging is a crucial yet challenging and time-consuming activity,

particularly as software systems grow in size and complexity. This section summa-

rizes the state-of-the-art debugging approaches for General Purpose Programming

Languages (GPLs) and DSMLs, highlighting advancements in automation, visual-

ization, and abstraction. Finally, studies on controlled experiments for DSLs and

DSMLs are briefly discussed.

2.1. Debugging Approaches in General Purpose Programming Languages

Zeller [40] provided a foundational overview of state-of-the-art debugging tech-

niques, introducing "scientific debugging" as an iterative process involving hypoth-

esis formation, prediction, and experimentation to locate and resolve software bugs.

Central to this approach is reproducing the failure conditions and iteratively refin-

ing hypotheses until the bug is identified and eliminated. Traditional interactive

debuggers allow developers to navigate through code, inspect variables, and ob-

serve call stacks. While suitable for procedural languages, these debuggers may

fall short for paradigms such as object-oriented programming, where objects—not

functions—are the focal elements of development.

Object-centric debugging extends traditional approaches by enabling direct in-

teractions with objects [52]. Similarly, event-based debugging allows users to define

and monitor high-level events. For example, Marceau et al. [53] introduced a cod-

able debugging approach employing data streams to track runtime behavior and

generate high-level events.

Visualization enhances understanding by intuitively representing runtime states.

Tools like the Data Display Debugger (DDD) [54] and systems developed by Cross et

al. [55] enable visualizations of complex data structures like linked lists and hash ta-

bles. Risberg et al. [56] further introduced property probes, a mechanism that links

source code spans with analysis nodes to assist developers in exploring program

analysis results, even after code modifications.

Automation also plays a key role in modern debugging. Fault localization tech-

niques, such as slicing, help identify code sections affecting specific variables [57],
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atic isolation [58]. Silva’s comparative study of algorithmic debugging techniques

provided a framework for integrating their strengths. Iterative Delta Debugging [59]

leverages historical program versions to isolate minimal code changes responsible

for failures. Despite these advances, many automated techniques remain underuti-

lized in industry, where traditional debugging approaches dominate.

For MAS, debugging approaches extend traditional paradigms by focusing on

agent-level states, behaviors, and interactions. Tools developed for MAS, such as

VisDebug [60] and agent communication monitors [61], provide tailored solutions

that integrate visualization and partial automation to address the unique challenges

posed by decentralized architectures [62].

2.2. Debugging Approaches in Domain-Specific Modeling Languages

Debugging is a critical yet challenging aspect of software development, espe-

cially for DSLs and DSMLs, as traditional debugging tools often lack support for

domain-specific concepts. Initial studies, such as Kelly & Tolvanen [63] and Safa

[64], observed that debugging in DSMLs frequently occurs at the code level with-

out tool support. Mannadiar and Vangheluwe [33] proposed mapping programming

language debugging concepts to DSMLs, emphasizing model-level debugging to im-

prove efficiency and accuracy.

Subsequent approaches, such as Sequencer by Kosar et al. [34], introduced DSML-

specific debugging tools. Similarly, Moldable Debugger by Chiş et al. [35] combined

domain-specific debugging views and operations. Wu et al. [31] developed a so-

phisticated debugger enabling automated mapping between DSL models and syn-

thesized code, facilitating breakpoints and execution control without requiring prior

knowledge of the underlying code.

Innovative frameworks, like TIDE [65], SEL-based instrumentation [66], and om-

niscient debugging for xDSMLs [67], extended these capabilities, addressing issues

such as non-executable model parts and providing platform-independent solutions.

Recent advancements, such as the test coverage framework by Khorram et al. [68]
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ciency in complex systems.

Despite these advancements, no approaches specifically address MAS DSMLs,

which require tailored debugging due to their unique properties, such as autonomy

and distributed operations. The framework proposed in this study aims to fill this

gap by providing structured debugging support for MAS DSMLs, integrating conven-

tional debugging concepts with simulation environments to handle their inherent

complexity.

2.3. Controlled Experiments on DSLs and DSMLs

Controlled experiments have been instrumental in evaluating the efficiency and

effectiveness of DSLs compared to GPLs. Foundational studies, such as Prechelt et

al. [70], highlighted the benefits of DSLs in enhancing programmer productivity and

code accuracy. Building on this, Kosar et al. [71] demonstrated that DSLs improve

comprehension accuracy and efficiency, aligning closely with domain-specific ab-

stractions.

Further research by Kosar et al. [72] confirmed that DSLs reduce errors and

cognitive load, making development more intuitive. Replication studies, including

those by Erdweg et al. [73], validated these findings across varied conditions, rein-

forcing the generalizability of DSL benefits.

Recent work [74] examined the impact of code bloat on comprehension in ge-

netic programming solutions, confirming its negative effect on understanding at-

tribute grammars. These findings emphasize the significance of DSLs in enhancing

efficiency and comprehension across domains.

Overall, the body of researches on controlled experiments with DSLs and DSMLs

consistently demonstrates their benefits in terms of comprehension accuracy, effi-

ciency, and reduced cognitive load. This extensive researches provide solid foun-

dation for the ongoing development and adoption of DSLs and DSMLs in various

specialized domains.

9
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In the realm of software development, debugging support is primarily facilitated

through the synergy between a programming language and an IDE. The combina-

tion of these two components empowers developers to monitor and modify the exe-

cution of programs in real-time [40]. As stated in [45], various debugging techniques

(e.g. breakpoints, stepping operators, symbolic execution) are used for GPLs.

However, it is essential for model developers to perform debugging activities

at the model level rather than at the code level and this new requirement has led

researchers to develop new debugging approaches for model-based development

and DSMLs. Debugging methods and tools for DSMLs are generally less abundant

and mature compared to those available for GPLs. For example, the Moldable De-

bugger [35] also enables domain-specific debuggers to be created by building and

combining debugging with domain-specific debug views. An omniscient debug-

ging method that enables unrestricted access to states during system execution has

been applied in the development of debuggers for xDSMLs [44]. Additionally, this

approach has been employed to enhance model transformations [75]. Inspired by

these endeavors, we explored various debugging methods suitable for MAS DSMLs

[39]. Motivated by the lack of debugging support or a method for existing MAS DSML

studies, we presented two different debugging approaches in the model-driven de-

velopment of software agents [39]. The first approach focuses on creating a map-

ping between the entities within the MAS model and the generated code. On the

other hand, the second approach encompasses the meta-model-based explanation

of the operational meanings of the agents. Although none of these two approaches

was directly used in this study, our work described in this paper was shaped in light

of the results obtained during the investigation of the applicability of these prior

approaches.

In this paper, we present a framework (MASDebugFW) that extends existing MAS

DSMLs with debugging capabilities and adds model debugging features during the

design and implementation of new MAS DSMLs, based on the conceptual defini-

tion of MAS metamodels from our previous study [50]. Additionally, the framework

10
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grate model debugging capabilities into the design and implementation of new MAS

DSMLs. By following this framework, developers can enhance the debugging expe-

rience and overall reliability of their MAS DSMLs, resulting in more robust and ef-

fective modeling environments. It is designed to be generic, reusable, and adaptable

to various aspects and perspectives of MAS DSMLs.MASDebugFW allows for model-

ing and validation of different aspects of MAS, such as the execution of agent plans,

belief set consistency, or agent communications following well-defined agent pro-

tocols like Contract Net [76]. Figure 1 provides an overview of the framework, which

comprises four distinct metamodels and a simulator that facilitates MAS operational

semantics. The formalization of this framework is influenced from Van Mierlo’s work

[38], which proposes a structured and model-based approach to transform model-

ing and simulation environments into interactive debugging environments. Addi-

tionally, the framework incorporates sub-language descriptions from the ProMoBox

[77] system and dynamic modeling language composition defined in [78]. Figure 1

represents the overview of MASDebugFW. This overview can also be seen as a meta-

model of MASDebugFW. The metamodels and simulator work in unison to enable

robust debugging functionalities for MAS DSMLs.

Figure 1: Overview of the generic debugging framework for MAS DSMLs.

In this study, MASDebugFW is designed to transform conventional modeling

and simulation environments into interactive debugging environments. In this con-

11
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• an approach that enables simulators to be instrumented with debugging sup-

port based on a clear representation of control flows.

• an architecture that enriches the (graphical) modeling environment with ex-

isting components for debugging purposes, including enhanced simulator and

model-specific visualizations for debugging.

• a reference framework that may constitute a base for language engineers and

toolmakers to develop their languages and tools with debugging support.

3.1. Overview of The Framework

In the framework, a MAS design meta-model named M MM ASDL defines the struc-

ture of the design language used to model the static structure of MAS. Existing MAS

DSMLs have such perspectives often combined with behavioral representations. There-

fore, if debugging capability for any existing MAS DSML is desired, refinement of the

MAS DSML meta-model is required to obtain the relevant static structure. For ex-

ample, MAS DSMLs such as DSML4BDI [19], DSML4MAS [79] and SEA_ML [26] can

be classified as design languages, as they lack any behavioral diagrams. However, if a

MAS DSML incorporates both structural and behavioral viewpoints, with the struc-

tural viewpoints utilized in the design language, then the behavior viewpoints, or

some of them, can be integrated into the runtime language, as described below. An

instance of this meta-model is called the MAS design model (MM ASDL). Users can

model the entire structure of the system using these instance models. These models

are specifically designed and constructed by the users. In the design model, vari-

ous concepts such as agents, roles, capabilities, plans, and events, along with the

relationships between these concepts, are represented and modeled.

It is worth indicating that by saying user, here, we refer to the MAS language

developers who may benefit from MASDebugFW for design and implementation of

their own languages.

Next, a metamodel called MAS runtime language metamodel M MM ASRL is intro-

duced to support modeling within the framework, representing the runtime states

12
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of the dynamic behavior and changing states of the MAS during its execution.For ex-

ample; meta-entities such as cur r entPl an, nextPl an, cur r ent Acti on, next Acti on,

and cur r entBel i e f are possibly included in this meta-model. The runtime model

(MM ASRL) of the system corresponds to an instance of M MM ASRL . This model serves

to depict the real-time states of the system during execution. It is derived from the

design model, signifying that it captures the ongoing states of the MAS as it operates.

Essentially, these models act as snapshots, expressing the instantaneous represen-

tations of the MAS states during runtime.

Thirdly, there exists a metamodel for the MAS Simulation Environment Model-

ing Language (M MM ASE ML), which enables the modeling of the simulation environ-

ment where the MAS model is executed. Instances (MM ASE ML) of M MM ASE ML are

used to represent MAS simulation scenarios. Essentially, this model describes the

behavior and characteristics of the simulation environment. Various aspects of the

simulation environment are captured by this model, such as the outcomes of agents’

actions within the environment, events that occur, communication conditions be-

tween agents, resource access, and resource utilization scenarios. In essence, this

simulation environment model expresses the conditions under which the MAS will

be tested during the simulation process. It provides a comprehensive representa-

tion of the environment’s dynamics and serves as a crucial element in conducting

MAS simulations and evaluating the system’s performance.

Finally, a MAS visualization language metamodel, M MM ASV L allows the creation

of customized models that graphically show the relevant parts of the MAS to im-

prove understanding of MAS models by developers. These models (MM ASV L) are

requested by the developer, so they are not compulsory to debug MAS models. Ob-

viously, this part of the framework can be used optionally depending on the request

of the developer. For example, if a developer is only concerned with communication

between specified agents, a simulator can provide a visual representation of a com-

plete simulation trace to present the communication step by step. Also, MM ASV L

instance can be generated not only for visualizing the simulation trace but also for

internal views of an agent such as plan execution.

13
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MAS designed using MAS DSML models. These models are created by agent devel-

opers during the system design phase, before the actual implementation takes place.

The primary goal of this framework is to minimize faults in the resulting MAS dur-

ing development. According to MASDebugFW, the runtime model is generated by

initializing it from the design model through model-to-model transformation. This

transformed runtime model represents the initial state of the MAS. Simultaneously,

the simulation environment needs to be modeled separately using the simulation

environment modeling language. The simulator takes the simulation environment

model and the runtime model as inputs. It then utilizes these models to gener-

ate subsequent states of the MAS during its execution. The simulator modifies the

runtime model based on the specified conditions and interactions within the sim-

ulation environment, allowing for the representation of the evolving behavior and

states of the MAS over time. In fact, the Runtime model and the Simulator together

provide the operational semantics of this system. Of course, the operational seman-

tics will also be determined by either how both of them will be implemented, and

the limits of a system to be implemented according to this framework. For example,

a synchronous simulator will only allow us to analyse a synchronous way to debug

a MAS , e.g. executing each agent’s actions sequentially. On the other hand, the de-

tail level of the runtime model will express how detailed the system can be executed.

The responsibility of initiating and using the simulator for debugging operations lies

with the user. In MASDebugFW, the user takes on the role of controlling the simu-

lation and debugging processes using the simulator. The subsequent subsections

of the paper likely discuss in detail how the user can interact with the simulator to

perform debugging tasks effectively. This user-centric approach empowers devel-

opers to actively engage with the debugging process, facilitating a more thorough

understanding of the MAS’s behavior and aiding in the identification and resolution

of potential issues.

If a developer of a MAS DSML intends to adapt an existing MAS DSML to MAS-

DebugFW, (s)he needs to derive the abstract syntaxes of the sub-languages required

by the framework. Metamodels for these sub-languages can be created based on

14
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divided into appropriate parts, such as static/dynamic and intra-agent/MAS orga-

nization, and the developer should decide which parts can be equivalent to abstract

metamodels of the framework. In this way, the developer transforms these parts

into the metamodels required for the framework and reshapes the existing DSML in

accordance with the framework. However, it should be noted that after this process,

some changes may be required to make them consistent. These steps lead to the

creation of initial versions of the meta-models for the sub-languages. Once the ab-

stract syntax of the sub-languages is established, the developer must define transfor-

mation rules between these sub-languages. These transformation rules enable the

conversion of design-time models to runtime models and facilitate the simulation

and debugging process. Next, the simulator should be implemented, ideally using a

model-to-model transformation approach, theoretically speaking. This means that

the simulator can be developed by transforming models from one representation to

another, allowing the simulation of the MAS based on the established transforma-

tion rules.

Once MASDebugFW is concretely implemented for a specific MAS DSML, it can

be extended and reused for another MAS DSML through re-engineering the model

transformations. By establishing transformations between the new DSML and the

runtime language of the DSML that already incorporates the framework, debugging

capabilities can be inherited for the target DSML. The process of adapting the frame-

work to a new DSML can also include horizontal transformations, such as transfor-

mations between the new DSML and the design language. Readers may refer to

[80] for an example implementation of horizontal transformations between differ-

ent MAS DSMLs. A similar approach can be followed here to support the interoper-

ability of MAS DSMLs and hence extend their debugging capabilities. Consequently,

debugging functionalities can be enabled for the target DSML when the framework

has already been applied to the source DSML during the transformation process.

This approach enhances the efficiency and adaptability of the framework, allowing

it to be effectively deployed for different MAS DSMLs without the need to develop a

completely new implementation for each one.
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In this section, we will explore various debugging operations that can be im-

plemented within the simulation environment, as per MASDebugFW. In this frame-

work, debugging operations are categorized into two fundamental classes: steps and

breakpoints. By leveraging these two basic classes of debugging operations, devel-

opers can effectively monitor and analyze the behavior of the MAS during simula-

tion, helping them identify and resolve potential issues, and ensuring the system

functions as intended.

In code debugging, users frequently employ code stepping to comprehend how

system states change during execution. This approach provides a detailed represen-

tation of the system’s behavior, offering insights into its workings. When adapting

such an approach to debugging models, stepping on the model can be seen as tran-

sitioning the current model state to the next state based on the provided operational

semantics. Developers can specify the granularity at which they want to observe the

MAS’s behavior during simulation. For instance, they can step through the execu-

tion state by state, allowing them to analyze the MAS’s behavior at each discrete

step. This level of control aids in identifying issues and understanding the system’s

dynamics during runtime. The runtime states of the program can be likened to a call

hierarchy since the coding structure in existing agent programming languages/en-

vironments often shares similarities with the object-oriented paradigm. In its sim-

plest form, software agents can invoke plans triggered by events in the environment

to achieve their goals, and these plans may call sub-plans when needed. Similar to

the object-oriented paradigm, stepping over code can generally be accomplished

using three possible operators: step into, step over, and step out. Debugging opera-

tions related to steps involve controlling the execution flow of the simulation envi-

ronment. The debugging framework’s definition of these operators is as follows:

Step into: This operator allows the user to delve into the details of the model

execution, navigating into the sub-plans and exploring their internal behavior

step by step. As commonly accepted in the object-oriented paradigm, an ob-

ject serves as an encapsulation unit that hides its current state and includes
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which comprise beliefs, goals, and plans, they can be viewed as encapsulation

units. These encapsulated elements represent composite elements that con-

tribute to an agent’s presence within the model. When referring to "Step into"

in the debugging framework, it means traversing through the model element

containing any composite element defined within it. For instance, when the

user attempts to step into an internal state of an agent, this action involves ex-

ploring all possible plans, actions, or sub-plans within the selected plans from

the pool of all possible plans associated with that agent. By stepping into the

internal states of an agent and comprehending its beliefs, goals, and plans, de-

velopers gain valuable insights into the agent’s behavior and decision-making

processes, thus enabling effective debugging and analysis of the MAS model

during simulation.

Step over: The step-over operator enables the user to execute the current plan

without diving into its sub-plans. This way, the focus remains on the broader

picture of the model’s behavior."Step over" and Step into" are complementary

concepts in debugging. "Step over" refers to moving through the model at the

composite level, acting as a filtering process during debugging. However, this

doesn’t mean that underlying elements beneath the composite level are not

executed; they are still executed but hidden from the user. For example, when

stepping over an agent’s plan, the user observes the resulting state at the end

of plan execution without seeing the execution of sub-elements (e.g., actions

or sub-plans). This approach allows users to control the level of detail they

observe during debugging, ensuring a more efficient debugging process.

Step out: The step-out operator lets the user return to the parent plan, exiting

from the current plan’s execution. It allows for a seamless transition back to

higher-level behaviors in the model. It refers to transitioning from the inner

composition level of a model element back to the element’s composition level.

For instance, when the user steps into an agent’s plan and navigates inside the

plan, they have the option to step out and return to the plan’s composition
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the finer details of the plan are concealed from the user. This capability allows

users to control the level of granularity during debugging, focusing on higher-

level behaviors while hiding the complexities of individual plans or actions.

These stepping operators in the debugging framework offer users a powerful set

of tools to analyze and comprehend the behavior of the MAS models during simula-

tion, facilitating effective debugging and troubleshooting.

Breakpoints may be compared to basic assertions in programming. They serve

as checkpoints set by developers at specific locations in the code or model, causing

the program’s execution to pause during debugging. When the program reaches a

breakpoint, it temporarily halts, allowing developers to inspect variables, data, and

the system’s state at that particular point. If a condition or assertion at the break-

point fails to hold true, the debugger interrupts the program’s execution. When the

execution of a program is interrupted, it means that an assertation in this program

fails. Generally, in the breakpoints concept, this situation occurs when the execution

of the program reaches a specific code line. When it comes to debugging models

within MASDebugFW, "interruption" refers to pausing the simulation. In this con-

text, users can set specific breakpoints in the model, which cause the simulation to

pause when certain conditions are met. The framework introduces three possible

types of breakpoints:

State based: It is the situation where the simulation pauses when the model

reaches a predefined state or a specific pattern within the state. This can be

thought of as a kind of temporal breakpoint formalism that improves on clas-

sical debugging expressions to reason not only about the current state of the

system, but also about its past and future. For example, it can be thought that

a certain event occurs, and an agent triggers a plan accordingly, a certain agent

reaches a belief pattern, or a predefined communication pattern is captured

among the agents.

Condition based: In the model, when certain properties of an agent are de-

fined, they introduce specific logical conditions that are checked against these
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in the environment facts, the simulation can be paused based on this condi-

tion. This allows developers to identify critical points during the simulation

where certain properties or beliefs of agents are affected by changes in the en-

vironment, leading to a pause in the simulation for further examination and

debugging.

Time based: In certain scenarios, the simulation halts when a specific pre-

arranged time is attained within the simulation environment. However, this

behavior is closely tied to the predefined time settings (e.g., real-time, scaled

real-time, as fast as possible, timeless - discrete event-based) specified for the

particular simulation environment being utilized.

By incorporating these three types of breakpoints, MASDebugFW provides users

with flexible and granular control over the debugging process, enabling them to an-

alyze and troubleshoot the model’s behavior effectively during simulation.

3.3. Execution States

Figure 2: Execution States transition graph of the simulator.

A simulator should offer the capability to switch between different execution

states, allowing the user to have control over the simulation. This way, the user can

intervene in the simulation process as needed. They can choose to stop, pause, or

continue the simulation of the runtime model at any point during the simulation

duration. This level of control empowers the user to actively interact with the simu-

lation and provides flexibility for effective debugging and analysis of the MAS model
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four different execution states, each with distinct characteristics. These execution

states allow smooth transitions, providing the user with flexibility during the simu-

lation process. The different execution states and transitions are shown in Figure 2.

These execution states are briefly described as follows:

Ready: This state corresponds to the default state of the runtime model and

serves as the initial state of the simulation. It mirrors the starting point of the

MAS as well. For instance, this mode encompasses an initial snapshot of the

agent’s beliefs, goals, and plans, capturing the initial state of the agents in the

system. When the simulation begins, it starts from this default state, providing

a foundation for the subsequent execution and behavior of the MAS.

Running: Once the user initiates the simulation, the simulation environment

transitions to Running state. In Running state, the environment can switch to

all simulation states except Ready state. However, this switch is only possible

when the simulation is interrupted. The interruption can occur due to en-

countering a breakpoint or when the simulation execution is controlled step-

by-step. In the Running state, each MAS agent executes atomic events, which

represent actions in an agent’s plan. This execution continues until the sim-

ulation is interrupted by a breakpoint or a user-initiated step-by-step control.

In essence, Running state represents the active execution state of the simula-

tion, where the agents perform their respective actions until a pause point is

reached or the user manually interrupts the simulation process.

Pause: During the ongoing simulation, the user has the option to switch the

simulation environment to the Pause state. In Pause state, the simulation

freezes, allowing the user to examine the system’s current state in detail. The

user can choose to resume the simulation at any time, switching back to Run-

ning state. While in Pause state, the user can access a snapshot of the cur-

rent MAS state. This snapshot includes execution traces of each agent’s plans,

communication traces between agents, and other relevant information. This
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cific moment, providing valuable insights into the system’s behavior during

the simulation process.

Stopped: When the user intends to terminate the simulation, they should

switch it to the Stopped state. In Stopped state, the simulation can only be

switched back to the Ready state. At this point, the simulator converts the

current MAS model back to its initial state. Once the simulation is stopped

and converted to the initial state, it is not possible to resume or continue the

simulation from that moment onwards. In summary, stopped state marks the

end of the simulation, and any further simulation activities can only start from

the Ready state, using the original, unaltered initial state of the MAS model.

By offering these distinct Execution States and seamless transitions, the frame-

work grants the user full control over the simulation process, facilitating effective

debugging and exploration of the MAS model at their own pace.

3.4. Model Simulator

In MASDebugFW, the operational semantics of the modeled MAS is specified

within the runtime language metamodel and interpreted by a simulator. There are

various options available for defining the simulator, with one of the most preferred

approaches being directly modifying the runtime model based on the model trans-

formation rules to achieve the next state of the system. However, the general struc-

ture of simulation algorithms often follows a high-level abstraction. Algorithm 1

listed above represents the abstract pseudo code of the simulator proposed in the

framework. The simulation algorithm is implemented using the following functions:

initialize: The given function is responsible for generating the initial state of the

simulation. This initial state is obtained through a model-to-model transfor-

mation process, where the instance of the MAS design language, which needs

to be simulated, is transformed into the MAS runtime model.

terminationCondition: The function takes the runtime model, simulation environ-

ment model, and time as inputs and returns "true" when the desired simula-
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Input: to be simulated Model (M), Simulation Environment Model (E)

Output: Runtime Model (RM), time (t )

t , RM ← initialize(M ,E) ;

while not terminationCondition(RM,E,t) do

foreach agent ai ∈ RM do

ai ← updateBeliefs(RM ,ai ,E);

ai ← updateGoals(RM ,ai ,E);

ai ← updateActivePlan(RM ,ai ,E);

ai ← nextAction(RM ,ai ,E);

end

t ← increaseTime(RM ,t );

if checkForBreakpoints(RM) then
pauseSimulation();

end

end
Algorithm 1: Generic MAS Simulation Algorithm
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or when a predefined time limit is reached during the simulation.

updateBeliefs: This function is responsible for updating an agent’s current beliefs

based on the runtime model and the current state of the simulation environ-

ment model.

updateGoals: After updating the beliefs of an agent, the simulator needs to deter-

mine which goals the agent desires to reach. To achieve this, the simulator in-

vokes the function responsible for updating the runtime model. This function

updates the runtime model, reflecting the agent’s updated beliefs and goals,

and prepares the system for further simulation steps.

updateActivePlan: The given function employs a reasoning mechanism to deter-

mine a plan for an agent to achieve its goals. If the agent already has an on-

going plan, the function waits for the current plan to finish before proceed-

ing, ensuring the integrity of the agent’s actions. Once the active plan is com-

pleted, the function then sets a new active plan based on the agent’s current

goals and the reasoning process. This approach enables the simulator to man-

age the agent’s actions in an orderly manner, ensuring that the agent’s plans

are executed sequentially and in accordance with its objectives.

nextAction: The given function is responsible for determining and executing the

next action of an agent based on the active plan. Using the active plan as

a guide, the function identifies the subsequent action that the agent should

perform to progress towards achieving its goals. It then carries out the execu-

tion of this action, allowing the agent to move forward in its plan and towards

fulfilling its objectives within the simulation environment

increaseTime: The provided function advances the simulation time while adhering

to the time semantics defined in the simulation setup. The time semantics

can be predetermined and set as fixed during the simulator implementation.

However, the flexibility exists to adjust the time semantics through the simula-

tion environment modeling language, allowing users to customize and mod-
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ments. This dynamic time management capability enhances the adaptability

of the simulator to various simulation scenarios.

checkForBreakpoints: The mentioned function facilitates the logical checking of

breakpoint conditions to determine if the simulation should pause. It eval-

uates the specified conditions associated with breakpoints at various points

during the simulation. When a breakpoint’s condition is met, the function

triggers a pause in the simulation, allowing developers to inspect the system’s

state and perform debugging operations at the designated breakpoint loca-

tions. This capability enhances the debugging process, enabling users to in-

tervene and examine the simulation at critical moments during the simula-

tion’s execution.

pauseSimulation: The given function is responsible for pausing the simulation.

Once the simulation is paused, it awaits a new signal from the user to resume

the simulation. This allows the user to take control of the simulation, inspect

the current state, perform debugging operations, and proceed with the sim-

ulation at their own pace. The pausing and resuming feature empowers the

user to interact with the simulation environment effectively, providing a flexi-

ble and user-friendly debugging experience.

By utilizing these functions, the simulator can efficiently interpret the opera-

tional semantics defined in the runtime model and execute the simulation, advanc-

ing the MAS through different states and time steps, while providing relevant status

updates to the user. The simulator uses the operational semantics defined in the ini-

tial runtime model to guide the simulation process. During the simulation, the run-

time model evolves dynamically to reflect the updated states of the system, which

are then used as output for further analysis.

3.5. An Implementation of MASDebugFW

In order to understand the validity and adequacy of the framework, a MAS DSML

was developed from scratch based on the above-discussed framework. According
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Agent Modeling Language (SAML) was developed as the first step of implementa-

tion. Defining the abstract syntax of the language is the first step in the develop-

ment of this modeling language. While developing the abstract syntax, an effort has

been made to show the existence of the basic elements of MAS and the interaction of

agents with an environment in the simplest way. Here, the abstract syntax was devel-

oped based on the MAS modeling concepts presented in Tezel et al. [25]. Then, the

concrete syntax of the modeling language was created. While constructing the con-

crete syntax, the findings of studies [81, 82] examining MAS DSMLs from a usability

perspective were utilized. As a second step, the syntax and the operational seman-

tics of the MAS Runtime Modeling Language (MASRL) were created and the rules for

model-to-model transformation between SAML and MASRL were derived. Thus, a

statically designed MAS is transformed into a dynamic state. Although the model-

to-model transformation code can be given in detail, it is not emphasized separately

due to the fact that this transformation is not directly related to the contributions of

the study. Similarly, the details of the transformations made are not given through-

out this paper. As the third step, MAS Environment Modeling Language (MASEML)

was developed. Abstract syntaxes of MASEML and MASRL have references to cer-

tain elements of each other. The implementation of the MAS visualization language

proposed in the general framework has not been implemented at this stage, as it is

optional and left to the discretion of the developer. However, it can be thought that

this language, in its simplest form, could consist of a series of diagrams showing the

exchange of messages between agents, or a summary diagram that instantly shows

the internal structure of an agent. Although a MAS visualization language was not

created based on the framework, a diagram was created that can summarize the in-

ternal structure of any factor while applying MASRL to understand the contribution

of this part of the framework to debugging. The language development approaches

introduced in Tezel et al. [20] and Kardas et al. [19] were adopted here in the engi-

neering of the above mentioned MAS languages. The general view of the presented

application is illustrated in Figure 3.

The concrete implementation of the debugging framework was realized by using
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ronments according to Eclipse Modeling technologies within the Eclipse ecosystem.

Figure 3: Overview of the implementation of MASDebugFW.

3.5.1. Design Language

The SAML was developed to be used as the design language of the framework. As

seen in Figure 4, the SAML meta-model includes some elements that can be used to

model the interactions of agents with the environment, as well as the basic elements

required for a MAS. In the metamodel, there is a M AS meta entity representing the

system which is needed to be modeled. The M AS must have at least an Ag ent and

an Envi r onment meta entity. It can also have C apabi l i t y meta entities to rep-

resent the capabilities of the agents exist in the system. C apabi l i t i es within the

system can interact with one or more environments. In addition, each capabi l i t y

can have sub-capabilities and Pl an and Bel i e f meta entities. Plans are triggered

by events, which are represented by the Event meta entities, that occur within the

system. Each plan also has a context and, actions represented by the Acti on meta

entity. Actions can use functional parts represented by the Oper ati on meta entities

in the environments in which they interact. Thus, new events can be triggered in the

environment.

To provide a clearer understanding of the underlying concepts used in SAML, we

2Eclipse Foundation, Sirius, https://www.eclipse.org/sirius/
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Interested readers may refer [23] or [19] for an extended discussion of these MAS do-

main concepts. A capability refers to an agent’s ability to perform specific actions or

tasks, enabling it to achieve its goals. A belief represents the information or knowl-

edge an agent holds about itself or its environment, which influences its decision-

making processes. The environment is the external context in which agents operate

and interact with other agents or entities. A goal defines the desired state or outcome

that an agent strives to achieve, guiding its behavior and decision-making. A plan

is a structured sequence of actions that an agent executes to accomplish a specific

goal. An event represents a change or occurrence in the environment or the system

that triggers specific agent behaviors or reactions. An action is an atomic operation

performed by an agent as part of its plan execution, affecting its internal state or

the environment. Lastly, an operation is a behavior that, when executed, can gener-

ate updates to observable properties and trigger specific observable events, allowing

agents to interact dynamically with their environment. These meta-entities are core

components of SAML and are integral to modeling agent behaviors, interactions,

and decision-making processes.

The concrete syntax of the language consists of 4 different diagrams represent-

ing 4 different perspectives. These are MAS, Environment, Capability and Plan dia-

grams. Graphical concrete syntax elements of the language and their notations are

given in Figure 5. The MAS diagram, which expresses the general structure of the

system, is responsible for the modeling of the agents, capabilities and environments

of the system and the interaction between them. The Environment, Capability and

Plan diagrams are responsible for modeling the internal structures of the environ-

ment, capabilities, and plans, respectively. Examples of a MAS diagram, a Capability

diagram, and a Plan diagram are shown in Figure 6, representing different perspec-

tives of the same MAS model.

3.5.2. Runtime Language

The MAS Runtime Modeling Language (MASRL) was developed with a meta-

model that contains the operational semantics of a MAS and is shown in Figure 7.
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Figure 4: The meta-model of the SAML.

Figure 5: Graphical concrete syntax elements of the SAML language and their notations.

Although the metamodel of MASRL has similar meta entities with the metamodel of

SAML, some new properties to the meta entities and different relationships between
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(a) MAS Diagram Example
(b) Capability Diagram Example

(c) Plan Diagram Example.

Figure 6: Examples of a MAS diagram, a Capability diagram, and a Plan diagram

meta entities have been added. Thus, MASRL can contain operational semantics.

The concrete syntax is defined in such a way that it can accurately represent the

runtime, although notations similar to SAML were chosen, especially when consid-

ering icon selection. Instances are generated by transformation through the SAML

instances. The instances created by the transformation reflect the initial moment of

MAS that is intended to be included in the debugging process. Figure 8 shows an

example of a model.

3.5.3. Simulation Environment Modeling Language

The simulation environment modeling language (MASEML) enables simulation

parameters to be given to the simulator by modeling. The metamodel of MASEML is

shown in Figure 9. It has two main meta-elements. These elements are Scenar i os

and Br eakpoi nt s. There are three types of possible Breakpoints in the language:

StateBased Breakpoints: Simulation is paused when the model reaches a cer-

tain predefined pattern. To be more specific, when we consider the runtime
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Figure 7: The meta-model of the MASRL.

model as a graph, the simulation is paused if a predefined sub-graph is reached.

ConditionBased Breakpoints: The simulation is paused in cases where the

elements defined on the model provide a certain logical condition, such as

the occurrence of a certain event, activation of a specific plan or an agent in

the model believes in a certain fact about the environment.

TimeBased Breakpoints: It is paused in a simulated environment if a certain

time is reached. However, this situation is directly related to the time defi-

nition of the simulation environment. In the implementation here, the time

of the simulation is operated independently of the real-time as a sequence of

events in time what is called discrete-event simulation.

Another important meta-element here is the scenario. Scenarios are parts where

the simulation is modeled under which conditions it works. There are two types of

elements that can be input into the system under a scenario. The first one tells when

any event will occur in the simulation environment according to the time concept
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Figure 8: MASRL diagram example.

of the simulation. Second, it states under what conditions the actions in the plans

of the agents whether would be taking place.

3.5.4. Simulator and Debugger

The simulator and debugger come embedded in the modeling environment de-

veloped according to MASDebugFW. Although the simulator represents a kind of

model-to-model transformation approach that performs in-place transformations

to create the MASRL instance in the next step, we coded a Java-based simulator due

to the existing model-to-model transformation tools being too generic to implement

this kind of simulator. A screenshot of the debugger is given in Figure 10. The sim-

ulation environment has 4 different Execution States as stated in the framework.

These are Ready, Running, Pause, Stopped, respectively. The first state of the system

is the ready state. After the simulator starts simulating, the system switches between
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Figure 9: The meta-model of the MASEML.

the two state, these are Running and Pause state. While the user can put the simu-

lator into Running state at any time, (s)he can enter Pause state with breakpoints or

steps. The user can switch to the last state, Stop state, at any time. In this case, the

simulation terminates, and the system returns to the initial state.

In the next section, a case study of MASDebugFW is presented. We also prepared

a video for interested readers to see how to use it (https://youtu.be/3MKDgob9ij4).

Additionally, the source code and bundle of the implemented framework can be

found in the Mendeley repository [83].
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Figure 10: A screenshot from the simulator and debugger

4. Case Study

The following subsections discuss the details of the design and debugging of an

agent-based Garbage Collection System both using MASDebugFW and benefiting

from the implementation discussed in Section 3.5.

4.1. System Design with SAML

The development of a Garbage Collection MAS is widely used to illustrate MAS

design and implementation in the AOSE field (for example [19, 84, 6, 85, 86]). There

are two types of agents called Burner and Collector in this system, which allows

agents to collect and dispose of garbage in an environment collectively. The first

task of the Burner agents is to report the location of garbage to the Collector agents.

The other task of the Burner agents is to burn the garbage brought by the Collector

agents. Collector agents go to the location of the garbage reported by the Burner

agents, pick up the garbage and bring it to the Burner agents. After the garbage is

delivered, the Collector agents must wait for the messages from the Burner agents

about garbage appearing in the environment.

The process is started by creating a design model based on different perspectives

in accordance with MASDebugFW. In Figure 11, a screenshot from the IDE contain-

ing the MAS diagram of the garbage collection system is given. Developers can cre-
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and dropping the necessary items from the palette on the right side of the modeling

environment. In this way, the main assets of the system such as agents, capabilities,

and environments are determined in the MAS diagram. For example, the Garbage

Collection MAS model includes the two agents, the three capabilities, one of which

is sub-capability of the other, and the one environment.

Figure 11: MAS model of the garbage collection system.

As noted in the Section 3.5, SAML has three different diagrams apart from the

MAS diagram. One of them is the environment diagram. In this diagram, the events

that should occur in the environment and the operations that may trigger these

events are modeled. The environment diagram of the garbage collection system is

given in Figure 12 . Four different events can occur in the system and four differ-

ent processes can trigger each. According to the relevant case study scenario, events

other than trashOccured should appear in the environment only when operations

are triggered, and naturally, trashOccured should also occur spontaneously in the

environment.
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Figure 12: Environment diagram of the garbage collection system.

When each of the environments is defined in the corresponding diagram, the

internal structure of each capability should be modeled. Figure 13 shows an exam-

ple model in the capability diagram for the Cleaning capability. Two different plans

have been modeled here to deal with the trashOccured event. Also, in one of the

plans, there is a prerequisite that the relevant agent believes in the available() belief.

Additionally, the capability given here has a sub-capability called Moving. Beliefs

created to be used in modeled plans are also seen in the capability viewpoint. Al-

though plans for a single event are modeled on the corresponding diagram, other

events defined in the environment in which the capability interacts appear in the

diagram. Therefore, the user can model the plan for different events if (s)he wishes.

Figure 13: The capability diagram of the Cleaning capability.

With the help of the Plan diagram shown in Figure 6, the internal structure of any

plan defined in a capability can be modeled. For example, the Cleaning_Process_Start

plan given in Figure 14 shows a sequence of actions and messages. As can be seen
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action is related to an operation, it causes another event to occur in the environment

when the relevant action takes place. The actions can also lead to a certain belief be-

ing believed or not believed by the agent. While the consequences of actions affect

the agent performing the action, in the case of messages, which are a special type of

action, the consequences affect the agent receiving the message.

Figure 14: The plan diagram of the Cleaning_Process_Start plan.

4.2. Debugging Modeled MAS

Based on MASDebugFW, model-to-model transformations are applied for trans-

forming the model created in the design language into an instance of the runtime

language. In the example here, MAS modeled in SAML has been transformed into

MASRL instance shown in Figure 15. However, before starting debugging the model,

the MASEML model instance should be modeled where breakpoints and scenarios

are modeled. As mentioned before, there are 3 types of break points. These are

TimeBased, ConditionBased, and StateBased.
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Figure 15: MASRL model of Garbage Collection System.

While it is easy to define Time-Based and Conditional-Based breakpoints in the

corresponding diagram with only drag-and-dropping from the palette, for a State-

Based breakpoint, a subgraph of a MASRL instance should be created. As an exam-

ple of the state-based breakpoint, when the plan goToGarbage is executed success-

fully, the status of the plan Cleaning_Process_Start waiting in the planning queue of

the Collector agent is shown in Figure 16.

In Figure 17, the scenario diagram, which is the other important element in

MASEML, is shown. Here, it is possible to model the occurrence of a defined event

in the environment once or for certain periods, or the conditions under any action

which could be executed or not.

For example, consider Figure 17, for the dropTheGarbage action to take place,

the relevant agent must believe in picked(garbage) belief. However, as a result of the

pickGarbage action that took place in Figure 18, the agent does not believe picked(garbage)
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Figure 16: State-based breakpoint example.

Figure 17: Scenario diagram example.

belief as it should. In this case, the dropTheGarbage action that is in the same plan

will not be able to take place due to the scenario given in Figure 17 and the related

plan will fail. Figure 19 illustrates this situation. When confronted with such a situ-

ation, it is necessary to make a design change in the design model so that the pick-

Garbage action adds the picked(garbage) belief into the mental state of the agent.

5. Empirical Evaluation

In this section, we evaluate MASDebugFW both qualitatively and quantitatively.

Quantitative evaluation was carried out in 10 sessions with participants volunteer-

ing to participate, 6 days apart. The participants were asked to perform debugging

activities over the given case study models and the data regarding the debugging

performances of the participants were recorded. Qualitative evaluation was made

with a questionnaire based on the technology acceptance model. All the results ob-

tained were analyzed statistically.

5.1. Quantitative Evaluation

A quantitative evaluation was conducted to empirically determine whether MAS-

DebugFW could significantly improve MAS modeling and debugging in terms of

time efficiency, error localization accuracy, diagnostic precision, and the ability to

make acceptable fixes. In the quantitative evaluation, a within-subject experimen-

tal design was employed to ensure consistency across participants and to minimize

variability caused by individual differences. This design allowed each participant to
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Figure 18: The moment when the pickGarbage action occurs in the MASRL model of the Garbage Collec-

tion System.

be exposed to all conditions, ensuring a robust comparison of the experimental fac-

tors. This approach was chosen to provide a direct measurement of MASDebugFW’s

impact on MAS modeling and debugging tasks. The experiment was designed with

10 case studies, created by experts experienced in MAS and DSML development.

The participants were assigned tasks to identify, diagnose, and fix faults in MAS

models. In each session, participants alternated between using the debugging tools

developed as part of MASDebugFW and debugging without these tools. The order

of tool usage was randomized to prevent learning effects from biasing the results.

In each session, participants were divided into two groups: one group used the de-

bugging tools developed under MASDebugFW, while the other group performed the

debugging tasks without these tools. This allowed for a controlled comparison of

performance metrics, including time spent, errors localized, and fixes applied. The
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Figure 19: The moment when the dropTheGarbage action occurs in the MASRL model of the Garbage

Collection System and the related plan fails.

assignment of participants to groups alternated across sessions to ensure a balanced

evaluation.

5.1.1. Selection of Participants

Participating candidates are graduate students, academics, and/or software de-

velopers who have taken or are taking the postgraduate courses about MASs and

DSMLs such as Advanced Software Engineering, Model-Based Software Engineer-

ing, Agent-Based Software Development, and MASs given at Ege University Inter-

national Computer Institute and Computer Engineering Department. Persons in-

volved in the development processes of the tool proposed in this study were not

invited to participate in the experiments in order not to create bias and maintain

impartiality. Invitations were sent to 8 candidates who met these criteria within the
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volunteered to participate in the experiment. Consent forms were signed by all the

volunteered participants. All participants have at least 1.5 years of MAS design and

implementation experience, which includes applying AOSE methodologies and us-

ing at least one agent development API. In addition, all participants are familiar with

at least one of the software engineering methodologies, mostly based on UML, and

some of them have been working in the industry and have experience in using mod-

eling tools and DSMLs to develop industrial products for more than 5 years on the

average.

5.1.2. Hypotheses

The following 4 hypotheses were attempted to test with the experiment:

H 1
0 : SAML and debugging tools (MASRL, MASEML, MASVL) developed in ac-

cordance with the debugging framework proposed in the study have no effect

on the number of faults that can be detected during debugging.

H 2
0 : SAML and debugging tools (MASRL, MASEML, MASVL) developed in ac-

cordance with the debugging framework proposed in the study have no effect

on the number of faults to be diagnosed correctly during debugging.

H 3
0 : SAML and debugging tools (MASRL, MASEML, MASVL) developed in ac-

cordance with the debugging framework proposed in the study have no effect

on the fixing of faults that can be detected during debugging.

H 4
0 : SAML and debugging tools (MASRL, MASEML, MASVL) developed in ac-

cordance with the debugging framework proposed in the study have no effect

on the time spent for debugging.

The significance level to be used in statistical testing of the hypotheses given

above was chosen as 0.01. The significance level here indicates that the risk of mak-

ing an error of 0.01 (1%) in rejecting the hypotheses is accepted. Although it is de-

sirable to keep the level of importance low, as the level of importance decreases,

the claim put forward by the hypothesis will be very difficult to reject, even if it is
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and 10% in order to ensure that the tests performed are meaningful [87, 88]. In the

sessions held during the evaluation of the application of MASDebugFW, there were

observations that the application was extremely effective. As a result, although it will

be difficult to detect the differences with statistical tests, the significance level was

accepted as 0.01 and it was desired to reduce the false positive probability as much

as possible.

5.1.3. The Variables of the Experiment

Experimental variables are presented below as factors, non-factor independent

variables, and dependent variables.

• Factors

Debugging tool support is the only factor in the designed experiment. This

factor is measured on a nominal scale and will have two levels: exist, not exist.

• Non-factor Independent Variables

There are two independent variables kept fixed throughout the experiment.

These are MAS models and injected faults.

MAS is a paradigm used in modeling and implementing autonomous and com-

plex systems. Therefore, it has been put forward with the expectation that

all the examples proposed for evaluation will explain and represent the such

complex and autonomous systems that may exist. There are 10 different MAS

examples planned to be used in the experiment: Home Servant System, Garbage

Collection System, Elevator Management System, Taxi Management System,

Smart Home Management System, Online Store System, Air Traffic Control

System, Paramedic and Ambulance Management System, Supply Chain Man-

agement System, Mine Management System.

Brief descriptions of the scenarios are as follows:

• Home Servant System: A MAS that enables service tasks in an environ-

ment. There are 3 different agents in the system to be implemented. The
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agent. If it has a drink in its stock, it will serve the beverage to the “Owner"

agent. Otherwise, it will order from the “Supermarket" agent. When its

order arrived, it will serve this drink. Meanwhile, the “Owner" agent will

request a new drink each time it runs out.

• Garbage Collection System: A MAS that collects and destroys garbage in

an environment. There are 2 different agents in the system to be im-

plemented. The "Collector" agent collects the garbage in the environ-

ment and brings it to the "Burner" agent. The "Burner" agent destroys

the garbage.

• Elevator Management System: A MAS is responsible for operating eleva-

tors in a building. There are 3 different agents in the system to be imple-

mented. The “ManagerAgent” evaluates incoming elevator calls as single

or double floors and transfers them to the agents responsible for single

or double floors. If the relevant agents are available, they go to the rele-

vant floor, and if they are not available, they notify the "ManagerAgent".

In this case, the “ManagerAgent” makes a request to the elevator agent

again.

• Taxi Management System: A MAS that manages a taxi company, primar-

ily answering customer calls and determining taxi routes. The related

system is designed for the management and administration of taxis at a

taxi stand. There are 4 different agents in the system to be implemented.

The “Manager” agent responds to the taxi calls coming to the center and

sends this call to the next taxi. If the “Driver” agents who receive the call,

think that it is their turn and if it is available, they go to pick up the cus-

tomer who is the subject of the call. If not, they report this situation to

the "Manager".

• Smart Home Management System: A MAS that provides the entire man-

agement of a smart house. There are 2 different types of agents in the

system to be implemented. The “Manager” agent constantly monitors
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tain events, waiting for actions that will ensure the stability of the house

in the face of this event. When situations such as the cooling or heat-

ing of the house, or the change in the day or night are conveyed to the

“Housekeeper” agent, the agent takes some precautions regarding these

situations.

• Online Store System: A MAS that enables customers to be accurately

matched with real shops and shop safely in an online environment. There

are 4 different types of agents in the system to be implemented. The

“Customer” agent represents the customers who come to the online shop-

ping system. It orders books, electronic goods, or furniture taking into

consideration the customer’s needs. According to the type of order placed,

the agent representing the appropriate store meets the relevant request,

prepares, packs and ships the product, and informs the customer of this

situation.

• Air Traffic Control System: A MAS that controls air traffic. There are 4

agents in 2 different types in the desired system. The “Controller” agent

responds to aircraft landing or taking off requests from the “Plane” agents.

If the runway is available, the "Controller" agent allows landing or take-

off. If not, it cancels the landing or take-off. While the “Plane” agents

make a request again in case of cancellation, the aircraft will land or take

off if allowed

• Paramedic and Ambulance Management System: A MAS that enables

ambulance and paramedic services to reach the patients in the fastest

way. There are 4 agents in 2 different types in the desired system. The

“Coordinator” agent forwards the ambulance calls from 3 different loca-

tions to the “Ambulance” agent responsible for the relevant region. The

relevant agent deals with this call if the ambulance is available.

• Supply Chain Management System: A MAS that manages a company’s

procurement processes. There are 3 different agents in the system to be
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it has a product, it gives the good to the customer. If not, it asks for the

"Warehouse" agent that represents the warehouse. If the good exists in

the warehouse, the "Warehouse" agent sends it to the "Seller" agent. If

the good is not in the warehouse, this time it is requested from the "Sup-

plier" agent. The “supplier” agent sends the goods to the warehouse. The

“Warehouse” agent also sends the goods, it receives from the “Supplier”

agent to the “Seller” agent. The "Seller" agent also sends the incoming

goods to the customer.

• Mine Management System: A MAS that manages the whole mining pro-

cess of a company. There are 3 different agents in the system to be im-

plemented. The “Seeker” agent is looking for gold ore in the mining area.

When it finds a new ore, it notifies the "Supervisor" agent. The “Super-

visor” agent reports the status to the “Collector” agent for the collection

of the found gold ore. The “Collector” agent collects the ore and notifies

the “Supervisor” agent that the collection process is finished.

Models, documents and all other materials for these case studies can be found

in the accompanying Mendeley repository [83].

• Dependent Variables

There are 4 different dependent variables here:

• The first is the amount of time spent by each participant during each

case study.

• The second independent variable is the ratio of the location of faults

detected correctly.

• The third independent variable is the ratio of the diagnosis of faults to

be correct.

• The fourth independent variable is the ratio of the repair suggestions of

faults to be correct.
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An experiment with one factor and two levels was designed. The relevant factors

and their levels have been specified in the previous section. Since the number of po-

tential participants qualified to participate in the experiment is known to be limited,

a within-subject design [88] was preferred as previously discussed. Thus, it was en-

sured that the participants, who could be divided into control and test groups, were

not divided into two due to the lack of subjects, and the individual differences in the

general performance levels of the participants did not affect the experiment. This

is important because the performances of the participants were always different.

In an experiment specifically related to debugging, some participants were outper-

forming others regardless of their status. Thus, all participants had completed the

experiment once for each factor level.

Two important disadvantages may arise in such a design: The order effect and

the Carry-over effect. To minimize the negative effects of these two conditions on

the experiment, a certain time interval was placed between the two applications.

Also, during two consecutive sessions, the same participant was not allowed to do

the same practice (each case study is called practice) at the same factor level or the

other factor level. Here, after a participant has already joined an application, they

must wait for at least 2 applications before performing the same application. In

other words, the minimum period for a participant to perform the same applica-

tion at a different factor level is 21 days. As stated earlier, the experiment consisted

of ten applications, each lasting 1 hour. The entire evaluation process spanned 65

days, with a 5-day interval between each application. Participants were given a 2-

day window to start the relevant application, during which they completed it in a

single 1-hour session at their convenience. In this case, the experiment took about

3 months with the preparation phase. The general view of the experimental design

is presented in Table 1.

5.1.5. Injected Faults

In particular, a literature search on the classification of error types in MASs was

conducted to identify the faults to be injected into the case study models to be used
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Participant_1 Participant _2 Participant _3 Participant _4 Participant _5 Participant _6

With Tool Support 1 1 1 2 2 2
1

Without Tool Support 2 2 2 1 1 1

With Tool Support 3 3 3 4 4 4
2

Without Tool Support 5 5 5 6 6 6

With Tool Support 6 6 6 5 5 5
3

Without Tool Support 4 4 4 3 3 3

With Tool Support 2 2 2 1 1 1
4

Without Tool Support 1 1 1 2 2 2

With Tool Support 7 7 7 8 8 8
5

Without Tool Support 8 8 8 7 7 7

With Tool Support 5 5 5 6 6 6
6

Without Tool Support 3 3 3 4 4 4

With Tool Support 9 9 9 10 10 10
7

Without Tool Support 10 10 10 9 9 9

With Tool Support 4 4 4 3 3 3
8

Without Tool Support 6 6 6 5 5 5

With Tool Support 8 8 8 7 7 7
9

Without Tool Support 7 7 7 8 8 8

With Tool Support 10 10 10 9 9 9

Sessions

10
Without Tool Support 9 9 9 10 10 10

Table 1: Number of practices performed by each participant at different factor levels in the sessions

in the qualitative evaluation. Although failure types are examined under certain

classes in a limited number of studies, failures are usually emphasized at the point

of communication (for example, see [60, 89, 90, 91]). In addition, the failure types

seen in MAS have been observed in various MAS development studies [92, 86, 93].

In this context, a classification proposal was made by combining the types of fail-

ures that can be seen in various MASs. When debugging MASs, the types of failures

that can be seen will be different when testing a single agent or MAS. The types of

failures seen in a single agent are mostly related to the functionality of the relevant

factor. The reviewed literature and sample MASs show that developers often make

mistakes on one of the three main characteristics of a single agent. These basic char-

acteristics can be expressed as reactivity, proactivity, and social skills. Here, failures

that can be seen in an agent are grouped under two main classes according to their

results. These are failures in social skills and cognitive skills (inability to provide re-

activity and proactivity properties correctly). On the other hand, in MASs, failure

types that concern the entire agent group are also examined under two main cate-
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ganizational problems. Communicative problems cause a community of agents to

not communicate as expected. Here we examine the issues that might prevent the

message flow between agents in the agent community from happening as expected.

The second covers the problems that prevent the agent communities within the sys-

tem or the common goals of the whole system from being successful by showing the

expected interactions of the agents.

5.1.6. Instrumentation

The instruments of this experiment are:

• Detailed documentation, and slides of the languages and tools to be used,

• Case study scenarios,

• SAML models in which we inject faults to cause defined failures,

• Personal data confidentiality agreement.

All relevant sources can be found in the accompanying Mendeley repository [83]

for the interested readers.

5.1.7. Performing the Experiment

The operational phase of the experiment was carried out in two steps. These are

preparation and execution, respectively.

Preparation

During the preparation phase, training videos, which took totaling 2 hours, were

prepared for the participants, describing all processes from installation to use of the

debugging language and tool. After the relevant videos and the tool to be used in

the evaluation process were shared with the participants, an online pre-evaluation

study was conducted. This pre-evaluation study aims to present the experimental

instruments to the participants in their first forms and thus prevent the negative ef-

fects that may arise in the experiments to be carried out. The data obtained from
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ter the relevant preliminary study, the experimental instruments were made more

useful according to both the data obtained and the feedback received from the par-

ticipants.

Execution

Participants attended assessment sessions in their home or office settings. There-

fore, each participant was assessed at any time during the 2 days determined for

the session. If all participants completed the evaluation before the 2-day period ex-

pired, the relevant session was finished and the waiting period for the new session

was started.

For each evaluation session, the scenarios of 2 case studies, the design models

of the related case studies, and the test results of the MAS implemented according

to the development processes of the related models were shared with the partici-

pants. In other words, each participant completed 2 applications in each evaluation

session. It was requested from participants to detect and diagnose the faults that

constitute the source of the failures expressed in the test results, whether using the

debugging tool on the model or not and repair the relevant model in the light of their

findings.

The time each participant can work through a case study was limited to 30 min-

utes, whether they used the tool. Therefore, each session did not exceed 1 hour.

In addition, signed consent forms were obtained from the participants certifying

they voluntarily participated in the evaluation process.

5.1.8. Data Analysis

The accuracy in detecting the locations of the faults, diagnosing, and repairing

recommendations was calculated as a percentage from the raw data. Since error

numbers are not standard among case examples, ratios are used here. However, the

normalization process was not applied due to the upper limit on time. The time

variable is recorded in minutes. Data analysis and hypothesis testing in the entire

quantitative evaluation process were performed with the IBM SPSS Statistics ver.
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Descriptive statistics of the data obtained from the experiment are given in Table

2. When the data are analyzed, it is seen that the use of tools at fault localization

makes an average of 15% contribution. In addition, though it was observed that

while the participants using the tool could detect 33% of the errors in the worst case,

they could not detect any errors when the tool was not used. Considering the correct

diagnosis of faults and correct fault repair suggestion rates, it is seen that the use of

debugging tool contributes 20% on average.

The tool appears to have contributed significantly to the time it took to complete

the debugging process. Using the tool shortened the debugging process approxi-

mately 10 minutes on the average. In addition, considering the minimum times,

some participants completed the case study in 3 minutes among the participants

who used the tool, while this time was 13 minutes for those who did not use the

tool.

An important point to be noted here is that the effectiveness of tool use is similar

according to the values in the average when the 5% cut averages are considered. This

indicates that outliers in the data do not have a strong influence on the effectiveness

of the tool.

When the 95% confidence interval values for the mean are examined, it is seen

that the confidence interval in all independent variables is better in the case of tool

support than in the case without tool support. If this procedure could be repeated

multiple times with different samples, the varying mean calculation for each sam-

ple would be within this range of 95%. Therefore, the absence of any independent

variable where the confidence intervals of the two situations intersect leads to the

expectation of similar results from multiple replications of the experiment.

Paired sample t-test was planned to determine whether there was a statistically

significant difference between dependent variables. However, for the related test to

be used, the difference between the paired values of the data must conform to the

3International Business Machines Corporation (IBM) SPSS Statistics, https://www.ibm.com/

products/spss-statistics
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Tool Support Not exists Exists Not exists Exists Not exists Exists Not exists Exists

N 60 60 60 60 60 60 60 60

Range 1,00 ,67 1,00 ,67 1,00 1,00 17,00 27,00

Interquartile range ,50 ,50 ,67 ,50 ,94 ,50 7,5 12,00

Minimum ,00 ,33 ,00 ,33 ,00 ,00 13,00 3,00

Maximum 1,00 1,00 1,00 1,00 1,00 1,00 30,00 30,00

Median 0,8750 1 ,5 1 ,5 ,7083 26,891 12,500

Mean ,6958 ,8472 ,5611 ,7778 ,5388 ,7361 25,5333 14,1000

95% Confidence Interval
,6078 ,7868 ,4643 ,7122 ,4384 ,6661 24,2437 12,1799 121,799

,7838 ,9076 ,6579 ,8433 ,6393 ,8061 26,9229 16,0201 160,201

5% trimmed mean ,7176 ,8642 ,5679 ,7901 ,5431 ,7500 28,0000 13,8333

Std. deviation ,34061 ,23378 ,37484 ,25382 ,38893 ,27108 53,2174 74,3264

Variance ,116 ,055 ,141 ,064 ,151 ,073 28,321 55,244

Table 2: The descriptive statistics of the data collected from the experiment

normal distribution. Table 3 shows the normality tests of the differences between

the tool-supported and the not tool-supported measurements obtained from the

experiment. According to both Kolmogorov-Smirnov and Shapiro-Wilk tests, it is

seen that the data other than time differences do not fit the normal distribution.

Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Difference Between

Times
,098 60 ,200* ,954 60 ,024

Difference Between

Fault Localization
,426 60 ,000 ,604 60 ,000

Difference Between

Fault Diagnostic
,343 60 ,000 ,742 60 ,000

Difference Between

Fault Repair
,356 60 ,000 ,734 60 ,000

Table 3: Normality Tests of Differences

The Wilcoxon Signed Rank Test, which is the non-parametric equivalent of the

Dependent Samples t-Test, was used to test the hypotheses (H 1
0 , H 2

0 and H 3
0 ) where

the differences between the tool-supported and not tool-supported measurements

were not normal according to the normality tests. Although the number of data is

sufficient to use the t-Test, the assumptions of the t-test, which is a parametric test,

could not be met due to the anomalies in the distribution of the differences in the

measurements. However, since the difference between the times fit the normal dis-
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Table 4 contains test statistics for the first three hypotheses.

Difference Between

Fault Localization

Difference Between

Fault Diagnostic

Difference Between

Fault Repair

Z -3,712 -4,581 -4,488

Asymptotic Sig. ,000 ,000 ,000

Table 4: Wilcoxon Test results used to test the H1
0 , H2

0 and H3
0 hypotheses

As can be seen from Table 4, H 1
0 , H 2

0 and H 3
0 hypotheses were rejected. So, it

can be said that the tool use had a significant effect on the localization, diagnosis,

and repair suggestion of faults. Table 5 shows the results of the Paired Sample t-Test

for the difference between times. It is clear from the table that in this case, the H 4
0

hypothesis was rejected. It is seen that the use of the tool has a significant effect over

time.

Mean Std. deviation Std. error mean
95% Confidence Interval

t df p
Lower bound Upper Bound

Difference Between

Times
11,43333 7,31464 ,94432 9,54376 13,32291 12,108 59 ,000

Table 5: Results of the paired sample t-Test used to test the H4
0 hypothesis

Looking at Figure 20a, it is seen that the participants, who used the tool, found

the correct localization of at least 50% of the faults. Although the range of the distri-

bution of half of the data is equal in both cases, the distribution of 25% of the partic-

ipants who do not use the tool, was extended until the lowest point of the definition

range. This situation does not fall below 0.33 in tool use. Though the distance be-

tween the midpoints (medians) of the data is very high in Figure 20b, there are also

serious differences in the distribution of the data, too. Here, the distribution of 50%

of the data of the participants who do not use the tool, is scattered almost over the

entire definition range, while 50% of the data of the participants who use the tool are

scattered between the maximum point and the midpoint of the definition range. In

Figure 20c, although the difference between the midpoints is relatively small, there

are significant differences between the distributions. Here, it is seen that the par-

ticipants who do not use the tool are distributed over almost the entire definition
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who use the tool. In Figure 20d, there are clear differences between the box plots

that represent the results of time spent debugging, both in terms of midpoint and

distribution.

(a) Box plot of the results of correct localization of

faults.
(b) Box plot of the results of correct diagnosis of faults.

(c) Box plot of the results of correct repair suggestions

of faults.
(d) Box plot of the results of time spent for debugging.

Figure 20: Box plots of the results.

5.2. Qualitative Evaluation

Technology Acceptance Model (TAM) [51] with the intention of testing end-user

acceptance of a new information system technology was used for this evaluation.

TAM tends to explain why individuals adopt a particular information system [94]. In

software engineering, TAM is used to control technology adoption in different soft-
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surements [96], and Meta-Modeling [97]. Researchers use TAM to explain not only

the acceptance of an information system or a particular software but also the pro-

cesses within these systems [98, 99]. In this study, it is aimed to analyze the accep-

tance of the proposed debugging approach by the users, both in terms of ease of

use and usability. Although the quantitative evaluations described in the previous

section show that the proposed approach will contribute to the model-driven de-

velopment of MASs, it may be difficult to be adopted by users if the perception of

usability and ease of use is not high. Understanding why MAS developers will ac-

cept the proposed approach will also be an important step toward increasing the

effectiveness of MAS use in the software industry.

According to TAM, two main factors can influence technology adoption. These

two factors are Perceived Ease of Use and Perceived Usability. Perceived Ease of Use

refers to the degree to which using technology requires minimal physical or mental

effort. On the other hand, Perceived Usability refers to an individual’s beliefs about

improving job performance while using a particular technology. Actual System Us-

age is the endpoint where people use technology. Behavioral Intention to Use is a

factor that drives people to use technology. Behavioral Intent to Use, or simply In-

tention to Use, is influenced by Attitude to Use, which is the overall impression of

the technology. External Variables such as the maturity, durability, and integrability

of the technology can be seen as important factors that directly affect the two main

factors in the acceptance of the technology. Considering that the acceptance of such

External Variables by users exists in the technology under consideration, users will

have the attitude and intention to use this technology. In the technology accep-

tance model, the assumption is that if a person believes that the use of a particular

technology will be uncomplicated and will increase the usability of the final prod-

uct, they will be more likely to use that technology. Figure 21 shows the TAM first

introduced by Davis et al. [51].

For qualitative evaluation, 12 questions were asked under 4 factors based on the

technology acceptance model. The aim here is to examine the acceptance status of

the tool, which can be seen as the proxy of MASDebugFW. A total of 12 questions
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Figure 21: Original TAM Model. [51]

(See the following link for related questions: https://forms.gle/XLuJ6ACcEUo6L34i9

), with 3 different questions under each factor, were asked to the participants with

a 7-point Likert-type scale after all the case studies were completed. Also, the ques-

tionnaire includes an open-ended question regarding the problems and proposals

for the acceptance of the tool. The proposed research model and related hypotheses

are shown in Figure 22.

Figure 22: Research model and hypotheses.

According to Figure 22, the followings are hypothesized:

H1: Perceived Usefulness has a positive effect on the intention to use MASDe-

bugFW.

H2: Perceived Ease of Use has a positive effect on the intention to use MASDe-

bugFW.

H3: Intention to Use has a positive effect on MASDebugFW acceptance.
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surement model must be determined, i.e. the internal consistency of the model

should be measured. For this purpose, the Cronbach’s Alpha values of each fac-

tor should be checked. All Cronbach’s Alpha values obtained are between 0.724 and

0.944 which are all above the threshold value of 0.7. Therefore, the internal consis-

tency reliability in terms of Cronbach’s Alfa has been verified.

Spearman correlation analysis, which is a nonparametric approach, was carried

out to verify the hypothesis tests in the relevant research model. The results are seen

in Table 6.

Actual Use Intention to Use Perceived Usefulness Perceived Ease of Use

Actual Use

Correlation Coefficient 1,000 ,940* ,803 ,836*

Sig. (2-tailed) . ,005 ,054 ,038

N 6 6 6 6

Intention to Use

Correlation Coefficient ,940* 1,000 ,836* ,971**

Sig. (2-tailed) ,005 . ,038 ,001

N 6 6 6 6

Perceived Usefulness

Correlation Coefficient ,803 ,836* 1,000 ,806

Sig. (2-tailed) ,054 ,038 . ,053

N 6 6 6 6

Perceived Ease of Use

Correlation Coefficient ,836* ,971* ,806 1,000

Sig. (2-tailed) ,038 ,001 ,053 .

N 6 6 6 6

Table 6: Spearman Correlation Analysis

When the results were checked, it was seen that all the hypotheses were con-

firmed. Moreover, another relationship that was not suggested in the research model

could be highlighted. There is a positive relationship between Perceived Usability

and Actual Use. In other words, users who perceive the proposed approach as useful

declare that they will actually use the system. The absence of a similar relationship

between ease of use and actual use indicates that users give more importance to

the perception of usability than the perception of ease of use in terms of the use of

the proposed approach. In general, all correlation coefficients obtained within the

scope of this study were found to be highly acceptable.

According to the answers received from the participants during the qualitative

evaluation, the average response scores for each topic are given in Figure 23. When
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all other factors. As can be seen from the open-ended questions asked to the users

here, the participants mostly gave feedback on the Perceived Ease of Use. Particu-

larly, users emphasized that the menu design, where it provides access to debugging

capabilities, could be better.

Figure 23: Radar diagram of the results for each factor.

6. Threats to the Validity

This section describes the threats to the validity of the conducted experiment

evaluation and its results. The threats can be originated from different validity types

including the conclusion, internal, construct, and external validity as described by

Wohlin et al. [100].

6.1. Conclusion Validity

This validity is related to the statistical analysis of the results and the composi-

tion of the subjects. The main threat to outcome validity in this study is that the

data on which the hypothesis will be analyzed and tested is insufficient due to the
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gineering disciplines, AOSE is a young research area and the number of developers

familiar with MAS applications appears to be relatively low compared to other soft-

ware industries. When the recent studies on using MAS DSMLs [7, 101, 80, 19, 47]

are examined, it is seen that the number of participants is similar as in this study. In

addition, during the evaluation, the participants were asked not only to fill out the

questionnaires in which they could share their usage experiences but also to imple-

ment the software development processes covering the development of various MAS

in 10 different case studies took a long time. It should also be taken into account

that this situation reduces the number of volunteers. On the other hand, according

to the usability scale of Neilsen [102], the number of participants in this study is at

an acceptable level. However, a multi-case study and within-subject experimental

design were used to eliminate this threat, which may arise from the small number

of participants. Thus, the participants did not have to be divided into control and

test, at the same time, the number of results obtained through multiple case studies

was increased. In addition, non-parametric statistical tests were preferred when the

assumptions of parametric tests were not met. Thus, statistically significant results

were obtained with this small number of participants.

In addition, the relative scarcity of data in the qualitative analysis phase prevents

the TAM research model from being handled by using structural equation models

like the examples in the literature. Therefore, it was necessary to consider the rel-

evant research model outside of the conventional approaches in the literature. Al-

though the way of handling the research model is quite unusual, it is statistically

consistent and significant.

6.2. Internal Validity

Internal validity deals with issues that could cause the measurement processes

in the experiments to affect the independent variables without the knowledge of the

researcher. If a relationship is observed between treatment and outcome, it should

be ensured that it is a causal relationship and not the result of an uncontrolled or

unmeasurable factor. Two independent variables are kept constant throughout the
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In the experiment, MASDebugFW was evaluated in MAS models where each model

contains only two failures, but multiple injected failures due to these failures. Faults

are injected into all case studies, taking into account all the types of failures they

cause. However, considering each case study, errors may differ depending on the

types of failures. Here, this threat has been tried to be reduced by balancing the

distribution of failure types in the sum of all case studies. The case studies, each

of which is represented by a MAS model, were created to include understandable

and simple scenarios as much as possible, depending on the literature and the ex-

perience of the researchers. On the other hand, the selection of case studies is not

random, which poses a slight threat to the validity of the experiment.

Since the number of potential participants who are qualified to participate in the

experiment is known to be limited, the within-subject design was preferred. This

preference may threaten the internal validity of the study. To avoid the negative

effects of the within-subject design on the experiment, a certain time interval was

placed between the two treatments. Also, during two consecutive treatments, the

same participant was not allowed to work on the same case at the same factor level

or the other factor level. Here, a participant has to wait for at least 2 treatments to

be able to do the same treatment at different factor levels after already participating

in any treatment.

6.3. Construct Validity

The main threat to construct validity comes from inappropriate or incorrectly

defined metrics. For this purpose, we mainly used rational or normalized metrics to

analyze the results obtained from the experiment.

The participants did not know which hypotheses were stated and were not in-

volved in any discussion about the advantages and disadvantages of MASDebugFW,

so they could not predict what the expected results from the experiment would be.

Therefore, this can be regarded as a minor threat to the construct validity.
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For the threats to the external validity, generalization of the achieved results

should be considered. The experimental environment needs to be more realistic.

We believe that this threat was mitigated in this study first by selecting a group of

evaluators covering both graduate students and software developers with at least

two years of industry experience as well as being graduate students. Second, rather

than being trivial examples, the multi-case studies herein consider the development

of MAS with varying complexities, i.e. they need to design and implement various

MASs having different numbers and types of agents interacting with each other to

achieve goals defined for different agent domains.

7. Conclusions

This study aimed to contribute to the development of debugging environments

for MAS DSMLs and the development of MAS modeling software tools.

The main motivation for this study is the lack of debugging methods required by

the model-driven development processes of MASs. This deficiency is thought to be

an important reason for the limited industrial use of MASs. As software complexity

increases, it seems that traditional debugging approaches developed for procedural

and sequential code are no longer sufficient. Moreover, when the system under con-

sideration is deployed on a parallel or distributed platform, which is quite normal for

MASs, non-deterministic synchronization failures can occur frequently. Especially,

the synchronous, non-deterministic, and continuous agent behaviors exhibited in-

side MAS environments make both MAS development and MAS testing/debugging

extremely difficult.

MASDebugFW leads to both enriching existing MAS DSMLs with debugging ca-

pabilities and creating the new MAS DSML from scratch with debugging capabili-

ties. It enables handling different viewpoints, components and features of a MAS

DSML and the relationships between them. In addition, a MAS DSML has been

developed by MASDebugFW and the integration of the above-mentioned features

has been achieved. Thus, it has become possible to complete the debugging at the
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before the modeled MASs are implemented. The second contribution of the study

is a reference framework that may be adopted by the language engineers who want

to create complex visual debugging environments for their MAS DSMLs. The third

contribution was demonstrated by creating a model debugging environment for a

MAS DSML, and the evaluation of the usability of MASDebugFW inside the debug-

ging process was performed quantitatively and qualitatively.

The quantitative evaluation showed that the use of the tool developed based on

MASDebugFW provides a significant reduction in the time spent by the developers

for debugging, and the results are very satisfactory in locating, diagnosing, and fix-

ing faults. By analyzing the data collected during the experiments, it was determined

that a participant with tool support fixed approximately 75% of the faults in 14 min-

utes on average. It has been observed that a participant who does not have tool

support spends 25.5 minutes on average to fix the same faults and leaves approx-

imately 50% unfixed faults in the models. These results show that the tool reduces

the time a participant spends for debugging by approximately 45% and improves the

proportion of bugs repaired in models from 50% to 75%, a 25- percentage-point in-

crease in fault resolution rates. Finally, a qualitative evaluation was carried out with

a questionnaire administered to the participants. It was seen that this new technol-

ogy proposed with the obtained data was acceptable by the participants according

to the TAM.

In future work, we aim to investigate the methods of incorporating the omni-

scient debugging [36], model slicing [103] and algorithmic debugging [104], into our

framework in addition to the current debugging operations on MAS models, i.e., it

will be explored and demonstrated how more advanced debugging approaches can

be applied for MAS DSMLs to support e.g. MAS DSMLs enriched with these ap-

proaches can speed up or simplify the debugging process.

The framework presented in this study can be revised to generalize debugging

for languages with different semantics. It allows system developers to debug the sys-

tem at the most appropriate level of abstraction using the abstractions that the pro-

gram co-determines. However, most software systems, such as MASs, distributed
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purpose programming languages. Debugging these systems presents significant

challenges, particularly in concurrent, parallel, and distributed environments, due

to the limitations of traditional code debugging tools. In future work, MASDebugFW

could be extended to support these types of systems, enabling debugging at higher

levels of abstraction and improving fault detection and resolution in such complex

environments.
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[35] A. Chiş, M. Denker, T. Gîrba, O. Nierstrasz, Practical domain-specific debug-

gers using the Moldable Debugger framework, Computer Languages, Systems

& Structures 44 (Part A) (2016) 89–113.

[36] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, B. Baudry, Omniscient de-

bugging for executable dsls, Journal of Systems and Software 137 (2018) 261–

288.

[37] B. Liu, S. Nejati, L. C. Briand, et al., Effective fault localization of automotive

simulink models: achieving the trade-off between test oracle effort and fault

localization accuracy, Empirical Software Engineering 24 (1) (2019) 444–490.

[38] S. Van Mierlo, A multi-paradigm modelling approach for engineering model

debugging environments, Ph.D. thesis, University of Antwerp (2018).

[39] B. T. Tezel, G. Kardas, Towards providing debugging in the domain-specific

modeling languages for software agents, in: Proceedings of the Second In-

ternational Workshop on Debugging in Model-Driven Engineering (MDEbug

2018) co-located with ACM/IEEE 21st International Conference on Model

Driven Engineering Languages and Systems (MODELS 2018), 2018, pp. 1–3.

[40] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging, Morgan Kauf-

mann, 2009.

66



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[41] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, A. Zeller, Where

is the bug and how is it fixed? an experiment with practitioners, in: Proceed-

ings of the 2017 11th joint meeting on foundations of software engineering,

2017, pp. 117–128.

[42] E. Soremekun, L. Kirschner, M. Böhme, A. Zeller, Locating faults with program

slicing: an empirical analysis, Empirical Software Engineering 26 (3) (2021) 1–

45.

[43] R. N. Charette, Why software fails [software failure], IEEE spectrum 42 (9)

(2005) 42–49.

[44] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, B. Combemale,

Execution framework of the gemoc studio (tool demo), in: Proceedings of the

2016 ACM SIGPLAN International Conference on Software Language Engi-

neering, 2016, pp. 84–89.

[45] S. Van Mierlo, E. Bousse, H. Vangheluwe, M. Wimmer, C. Verbrugge,

M. Gogolla, M. Tichy, A. Blouin, Report on the 1st International Workshop

on Debugging in Model-Driven Engineering (MDEbug17), in: Proceedings of

the 1st International Workshop on Debugging in Model-Driven Engineering,

2017, pp. 441–446.

[46] S. Van Mierlo, H. Vangheluwe, Debugging Non-determinism: a Petrinets Mod-

elling, Analysis, and Debugging Tool, in: Proceedings of the 1st International

Workshop on Debugging in Model-Driven Engineering (MDEbug 2017), 2017,

pp. 460–462.

[47] T. Z. Asici, B. T. Tezel, G. Kardas, On the use of the analytic hierarchy process

in the evaluation of domain-specific modeling languages for multi-agent sys-

tems, Journal of Computer Languages 62 (2021) 101020.

[48] T. Ahlbrecht, An algorithmic debugging approach for belief-desire-intention

agents, Annals of Mathematics and Artificial Intelligence (2023) 1–18.

67



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[49] F. Santos, I. Nunes, A. L. Bazzan, Quantitatively assessing the benefits of

model-driven development in agent-based modeling and simulation, Simu-

lation Modelling Practice and Theory 104 (2020) 102126.

[50] B. T. Tezel, G. Kardas, A Conceptual Generic Framework to Debugging in the

Domain-Specific Modeling Languages for Multi-Agent Systems, in: R. Ro-

drigues, J. Janousek, L. Ferreira, L. Coheur, F. Batista, H. G. Oliveira (Eds.),

8th Symposium on Languages, Applications and Technologies (SLATE 2019),

Vol. 74 of OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2019, pp. 8:1–8:13.

doi:10.4230/OASIcs.SLATE.2019.8.

[51] F. D. Davis, Perceived usefulness, perceived ease of use, and user acceptance

of information technology, MIS quarterly (1989) 319–340.

[52] J. Ressia, A. Bergel, O. Nierstrasz, Object-centric debugging, in: 2012 34th In-

ternational Conference on Software Engineering (ICSE), IEEE, 2012, pp. 485–

495.

[53] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurthi, S. P. Reiss, The design

and implementation of a dataflow language for scriptable debugging, Auto-

mated Software Engineering 14 (1) (2007) 59–86.

[54] A. Zeller, D. Lütkehaus, Ddd—a free graphical front-end for unix debuggers,

ACM Sigplan Notices 31 (1) (1996) 22–27.

[55] J. H. Cross, T. D. Hendrix, D. A. Umphress, L. A. Barowski, J. Jain, L. N. Mont-

gomery, Robust generation of dynamic data structure visualizations with mul-

tiple interaction approaches, ACM Transactions on Computing Education

(TOCE) 9 (2) (2009) 1–32.

[56] A. Risberg Alaküla, G. Hedin, N. Fors, A. Pop, Property probes: Source code

based exploration of program analysis results, in: Proceedings of the 15th

ACM SIGPLAN International Conference on Software Language Engineering,

2022, pp. 148–160.

68



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[57] B. Xu, J. Qian, X. Zhang, Z. Wu, L. Chen, A brief survey of program slicing, ACM

SIGSOFT Software Engineering Notes 30 (2) (2005) 1–36.

[58] J. Silva, A survey on algorithmic debugging strategies, Advances in engineer-

ing software 42 (11) (2011) 976–991.

[59] C. Artho, Iterative delta debugging, International Journal on Software Tools for

Technology Transfer 13 (3) (2011) 223–246.

[60] M. H. Van Liedekerke, N. M. Avouris, Debugging multi-agent systems, In-

formation and Software Technology 37 (2) (1995) 103–112. doi:10.1016/

0950-5849(95)93487-Y.

[61] H. S. Nwana, D. T. Ndumu, L. C. Lee, J. C. Collis, Zeus: A toolkit for building

distributed multiagent systems, Applied Artificial Intelligence 13 (1-2) (1999)

129–185. doi:10.1080/088395199117513.

[62] M. Dastani, J. Brandsema, A. Dubel, J.-J. C. Meyer, Debugging bdi-based

multi-agent programs, in: International workshop on programming multi-

agent systems, Springer, 2009, pp. 151–169.

[63] S. Kelly, J.-P. Tolvanen, Domain-Specific Modeling, John Wiley & Sons, Inc.,

Hoboken, NJ, USA, 2008. doi:10.1002/9780470249260.

[64] L. Safa, The Making of User-Interface Designer: a Proprietary DSM Tool

(2007).

[65] M. G. Van Den Brand, B. Cornelissen, P. A. Olivier, J. J. Vinju, Tide: A generic

debugging framework—tool demonstration—, Electronic Notes in Theoreti-

cal Computer Science 141 (4) (2005) 161–165.

[66] R. T. Lindeman, L. C. L. Kats, E. Visser, Declaratively Defining Domain-Specific

Language Debuggers, in: International Conference on Generative Program-

ming and Component Engineering (GPCE), 2012, pp. 127–136. doi:10.1145/

2189751.2047885.

69



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[67] E. Bousse, J. Corley, B. Combemale, J. Gray, B. Baudry, Supporting efficient

and advanced omniscient debugging for xDSMLs, in: Proceedings of the 2015

ACM SIGPLAN Int. Conf. Software Language Engineering (SLE 2015), 2015, pp.

137–148.

[68] F. Khorram, E. Bousse, A. Garmendia, J.-M. Mottu, G. Sunyé, M. Wimmer, A

language-parametric test coverage framework for executable domain-specific

languages, Journal of Systems and Software 211 (2024) 111977.

[69] M. Pasquier, C. Teodorov, F. Jouault, M. Brun, L. Le Roux, L. Lagadec, Temporal

breakpoints for multiverse debugging, in: Proceedings of the 16th ACM SIG-

PLAN International Conference on Software Language Engineering, 2023, pp.

125–137.

[70] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, W. F. Tichy, Two controlled ex-

periments assessing the usefulness of design pattern documentation in pro-

gram maintenance, IEEE Transactions on Software Engineering 28 (6) (2002)

595–606.

[71] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira, M. Črepinšek, C. D. Da, R. P.
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