
JADE 
Java Agent Development Environment

Ömer Faruk ALACA

1

Introduction to Jade

• JADE (Java Agent DEvelopment Framework) is a software framework
fully implemented in Java language.

• Easy implementation of multi-agent systems using a middle-ware

• Compatible with FIPA specifications*

• a set of tools that supports the debugging and deployment phase.

2

*For more information : https://jade.tilab.com/papers/JADETutorialIEEE/JADETutorial_FIPA.pdf

https://jade.tilab.com/papers/JADETutorialIEEE/JADETutorial_FIPA.pdf

Introduction to Jade

• The agent platform can be distributed across machines

• not even need to share the same OS

• The configuration can be controlled via a remote GUI.

• The configuration can be even changed at run-time by creating new
agents and moving agents from one machine to another one, as and
when required.

3

Introduction to Jade

• The only system requirement is the Java Run Time version 5 or later.

• JADE is distributed in Open Source under the LGPL License.

• Further details and documentation can be found at http://jade.tilab.com/

• BT, Telefonica, CNET, NHK, Imperial College, IRST, KPN, University of
Helsinky, INRIA, ATOS, and many others.

4

http://jade.tilab.com/

Jade Overview
• JADE is a middleware that facilitates the development of multi-agent

systems. It includes

• A runtime environment

• where JADE agents can “live” and that must be active on a given host before one or more
agents can be executed on that host.

• A library of classes

• that programmers have to/can use (directly or by specializing them) to develop their

agents.

• A suite of graphical tools

• that allows administrating and monitoring the activity of running agents.

5

Download JADE 
https://jade.tilab.com/dl.php?
file=JADE-all-4.5.0.zip

6

Containers and Platforms
• Each running instance of the JADE runtime environment is called a

Container

• it can contain several agents.

• The set of active containers is called a Platform.

• A single special Main container must always be active in a platform

• all other containers register with it as soon as they start. 

7

Containers and Platforms
• The first container to start in a platform must be a main container

while all other containers must be “normal” (i.e. non-main) containers

• Normal containers must “be told” where to find (host and port) their

main container (i.e. the main container to register with).

• If another main container is started somewhere in the network it

constitutes a different platform to which new normal containers can
possibly register.

8

Containers and
Platform

s

9

Containers and Platforms
• Main Container activating the JADE management GUI (-gui) option.

• <classpath> must include all jade classes plus all required application-specific

classes.

• peripheral container (-container option) that registers to a main
container running on host avalon.tilab.com (-host option) and
activates an agent called john of class myPackage.MyClass (-agents)
option

10

java -cp <classpath> jade.Boot -gui

java -cp <classpath> jade.Boot -container -host avalon.tilab.com –
agents john:myPackage.myClass

Main Container

• A main container differs from normal containers as it holds two special
agents

• Agent Management System (AMS)

• Directory Facilitator (DF)

11

AMS (Agent Management System)
• provides the naming service

• i.e. ensures that each agent in the platform has a unique name

• represents the authority in the platform

• for instance it is possible to create/kill agents on remote containers by

requesting that to the AMS

• This tutorial does not illustrate how to interact with the AMS as this is
part of the advanced JADE programming

12

DF (Directory Facilitator)

• provides a Yellow Pages service

• means of which an agent can find other agents providing the services he

requires in order to achieve his goals.

13

The “Book Trading” Example
1. The scenario considered in this example includes some agents

selling books and other agents buying books on behalf of their
users.

2. Each buyer agent receives the title of the book to buy (the “target
book”) as a command line argument and periodically requests all
known seller agents to provide an offer.

3. As soon as an offer is received the buyer agent accepts it and issues
a purchase order.

• If more than one seller agent provides an offer the buyer agent accepts the

best one (lowest price).

4. Having bought the target book the buyer agent terminates.

14

The “Book Trading” Example
5. Each seller agent has a minimal GUI by means of which the user can

insert new titles (and the associated price) in the local catalogue of
books for sale.

6. Seller agents continuously wait for requests from buyer agents.

7. When asked to provide an offer for a book they check if the

requested book is in their catalogue and in this case reply with the
price. Otherwise they refuse.

8. When they receive a purchase order they serve it and remove the
requested book from their catalogue.

15

Creating Jade Agents – The Agent Class

16

Creating a JADE agent is as simple as
defining a class extending the

jade.core.Agent class

The setup() method is intended to
include agent initializations.

The Agent Class - Agent Identifiers

• Each agent is identified by an “agent identifier” represented as an
instance of the jade.core.AID class.

• The getAID() method of the Agent class allows retrieving the
agent identifier.

17

The Agent Class - Agent Identifiers

• An AID object includes a globally unique name plus a number of
addresses.

• <nickname>@<platform-name> 🡺 Globally Unique Name

• An agent called Peter living on a platform called P1 = Peter@P1

• The addresses included in the AID are the addresses of the platform
the agent lives in.

• These addresses are only used when an agent needs to communicate with

another agent living on a different platform.

18

The Agent Class - Agent Identifiers

• Knowing the nickname of an agent, its AID can be obtained as follows:

 String nickname = “Peter”;

 AID id = new AID(nickname, AID.ISLOCALNAME);

• The ISLOCALNAME constant indicates that the first parameter
represents the nickname (local to the platform) and not the globally
unique name of the agent.

19

The Agent Class - Running agents

• The created agent can be compiled as follows:

• In order to execute the compiled agent the JADE runtime must be
started and a nickname for the agent to run must be chosen:

20

javac –classpath <JADE-classes> BookBuyerAgent.java

java –classpath <JADE-classes>;. jade.Boot buyer:BookBuyerAgent

The Agent Class - Running
agents

21

automatically assigned on the
basis of the host and port you are
running JADE on

The Agent Class - Agent termination

• Even if it does not have anything else to do after printing the welcome
message, our agent is still running.

• In order to make it terminate its doDelete() method must be
called.

• Similarly to the setup() method, the takeDown() method is
invoked just before an agent terminates and is intended to include
agent clean-up operations.

22

The Agent Class - Passing arguments to an agent

• Agents may get start-up arguments specified on the command line.

• These arguments can be retrieved, as an array of Object, by means
of the getArguments()method of the Agent class.

23

we will describe how to
dynamically discover seller

agents, next slides!

The Agent Class - Passing arguments to an agent

24

Get command line arguments here!

Agent terminate  
and  

Clean-up Operations

The Agent Class - Passing arguments to an agent

25

Arguments on the command line are specified included in parenthesis
and separated by spaces

Agent Tasks – The Behaviour Class

• The actual job an agent has to do is typically carried out within
“behaviours”.

• A behaviour

• represents a task that an agent can carry out.

• is implemented as an object of a class that extends
jade.core.behaviours.Behaviour.

26

Agent Tasks – The Behaviour Class

• In order to make an agent execute the task implemented by a
behaviour object it is sufficient to add the behaviour to the agent by
means of the addBehaviour()method of the Agent class.

• Behaviours can be added at any time:

• when an agent starts (in the setup() method)

• from within other behaviours.

27

Agent Tasks -The Behaviour Class

• Each class extending Behaviour must implement the

• action() method 🡺 that actually defines the operations to be

performed when the behaviour is in execution

• done() method 🡺 that specifies whether or not a behaviour has
completed

• have to be removed from the pool of behaviours an agent is carrying out.

28

Behaviours scheduling and execution
• An agent can execute several behaviours concurrently.

• However it is important to notice that scheduling of behaviours in an

agent is not pre-emptive (as for Java threads) but cooperative.

• This means that when a behaviour is scheduled for execution its
action() method is called and runs until it returns.

• Therefore it is the programmer who defines when an agent switches
from the execution of a behaviour to the execution of the next one.

29

Behaviours scheduling and execution
• Though requiring a small additional effort to programmers, this

approach has several advantages.

• Allows having a single Java thread per agent

• Provides better performances since behaviour switch is extremely faster than

Java thread switch.

• Eliminates all synchronization issues between concurrent behaviours

accessing the same resources (this speed-up performances too) since all
behaviours are executed by the same Java thread.

30

Agent Thread
path of execution

31

Behaviours scheduling and execution

32

 prevents any other behaviour
to be executed since its
action() method never

returns.

Behaviours scheduling and execution
• When there are no behaviours available for execution the agent’s

thread goes to sleep in order not to consume CPU time.

• It is waken up as soon as there is again a behaviour available for

execution.

33

 Types of Behaviours

• We can distinguish among three types of behavior

1. One-shot behaviours

2. Cyclic behaviours

3. Generic behaviours

34

One-shot Behaviours
• “One-shot” behaviours that complete immediately and whose
action() method is executed only once.

• The jade.core.behaviours.OneShotBehaviour already
implements the done() method by returning true and can be
conveniently extended to implement one-shot behaviours.

35

Operation X is performed only once.

Cyclic Behaviours

• “Cyclic” behaviours that never complete and whose action()
method executes the same operations each time it is called.

• The jade.core.behaviours.CyclicBehaviour already
implements the done() method by returning false and can be
conveniently extended to implement cyclic behaviours.

36

Operation Y is performed repetitively forever
(until the agent carrying out the above

behaviour terminates).

Generic Behaviours
• Generic behaviours that

embeds a status and execute
different operations
depending on that status.
They complete when a given
condition is met.

37

Operations X, Y and Z are
performed one after the

other and then the
behaviour completes.

Complex Behaviours
• JADE provides the possibility of combining simple behaviours together

to create complex behaviours.

• SequentialBehaviour

• ParallelBehaviour

• FSMBehaviour

• Refer to the Javadoc of the SequentialBehaviour,
ParallelBehaviour and FSMBehaviour for the details.

38

Scheduling operations at given points in
time

• JADE provides two ready-made classes (in the jade.core.behaviours
package) by means of which it is possible to easily implement
behaviours that execute certain operations at given points in time.

1. WakerBehaviour

2. TickerBehaviour

39

WakerBehaviour

• The WakerBehaviour whose action() and done() methods
are already implemented in such a way to execute the
handleElapsedTimeout() abstract method after a given
timeout (specified in the constructor) expires.

40

Operation X is performed 10
seconds after the “Adding
waker behaviour” printout

appears.

TickerBehaviour

• The TickerBehaviour whose action() and done() methods
are already implemented in such a way to execute the onTick()
abstract method repetitively waiting a given period (specified in the
constructor) after each execution.

41

Operation Y is performed
periodically every 10

seconds.

Behaviours required in  
the Book Trading example

42

AGENT COMMUNICATION – The ACLMessage
Class

• JADE agents provide is the ability to communicate.

• The communication paradigm adopted is the asynchronous message

passing.

• Each agent has a sort of mailbox (the agent message queue) where

the JADE runtime posts messages sent by other agents.

• Whenever a message is posted in the message queue the receiving

agent is notified.

43

44

AGENT COMMUNICATION – The ACLMessage
Class

THE ACLMESSAGE CLASS 
–The ACL language

• Messages exchanged by JADE agents have
a format specified by the ACL language
defined by the FIPA* international
standard for agent interoperability.

• jade.lang.acl.ACLMessage class
that provides get and set methods for
handling all fields of a message. 

 
 
 
 

45* http://www.fipa.org

• Sending a message to another agent is as simple as filling the fields of
an ACLMessage object and then call the send()method of the
Agent class.

46

informs an agent whose
nickname is Peter that 

today it’s raining.

THE ACLMESSAGE CLASS 
–Sending messages

The Book Trading  
example messages

47

• As mentioned above the JADE runtime automatically posts messages
in the receiver’s private message queue as soon as they arrive.

• An agent can pick up messages from its message queue by means of

the receive() method.

• This method returns the first message in the message queue
(removing it) or null if the message queue is empty and immediately
returns.

48

THE ACLMESSAGE CLASS 
–Receiving messages

THE ACLMESSAGE CLASS 
–Blocking a behaviour waiting for a message

• the agent’s thread starts a continuous loop that is extremely CPU
consuming.

• In order to avoid that we would like to execute the action() method of
the cyclic behaviour only when a new message is received.

• In order to do that we can use the block() method of the Behaviour
class. 
 
 
 
 
 
 
 
 

49

* The above code is the typical (and strongly suggested) pattern for receiving messages inside a
behaviour. 

THE ACLMESSAGE CLASS 
–Selecting messages with given characteristics from the message queue 

• When a template is specified the receive() method returns the first
message (if any) matching it, while ignores all non-matching messages.

• Such templates are implemented as instances of the
jade.lang.acl.MessageTemplate class that provides a number of
factory methods to create templates in a very simple and flexible way. 
 
 
 
 
 
 

50

THE ACLMESSAGE CLASS 
–Complex conversations

• A conversation is a sequence of messages exchanged by two or more
agents with well defined causal and temporal relations.

• The RequestPerformer behaviour mentioned in Book Trading

represents an example of a behaviour carrying out a “complex”
conversation.

✔send a CFP message to several agents (the known seller agents),

✔get back all the replies

✔in case at least a PROPOSE reply is received,

✔a further ACCEPT_PROPOSAL message (to the seller agent that

made the proposal) and get back the response.

51

THE ACLMESSAGE CLASS 
–Receiving messages in blocking mode

• if you call blockingReceive()from within a behaviour, this
prevents all other behaviours to run until the call to
blockingReceive() returns.

• a good programming practice

✔to receive messages is use blockingReceive()in the
setup()and takeDown()methods; use receive() in
combination with Behaviour.block()within behaviours.

52

The ACLMessage Class 
Book Trading example 

 
 

53

THE YELLOW PAGES SERVICE –The DFSERVICE Class

• A “yellow pages” service allows agents to publish one or more services
they provide so that other agents can find and successively exploit them.

• The yellow pages service in JADE (according to the FIPA specification) is

provided by an agent called DF (Directory Facilitator).

• Each FIPA compliant platform hosts a default DF agent (whose local

name is “df”)

54

THE YELLOW PAGES SERVICE –The DFSERVICE Class

55

THE YELLOW PAGES SERVICE –Interacting with the
DF

• To interact with DF by exchanging ACL messages using a

✔proper content language (the SL0 language)

✔a proper ontology (the FIPA-agent-management ontology) according to the FIPA

specification.

• In order to simplify these interactions,

✔JADE provides the jade.domain.DFService class by means of which

it is possible to publish and search for services through method calls.

56

THE YELLOW PAGES SERVICE –Publishing services

• In order to publish a service an agent must create a proper description
and call the register()static method of the DFService class.

57

THE YELLOW PAGES SERVICE –Searching for
services

• The search()static method of the DFService class can be used as
exemplified in the code used by the Book buyer agent to dynamically
find all agents that provide a service of type “book-selling”.

58

JADE – Netbeans Integration

59

JADE – Netbeans Integration

60

JADE – Netbeans Integration

61

REFERENCES
❖ G. Caire , «JADE Tutorial - JADE Programming For Beginners» 2009

❖F. Bellifemine, G. Caire, T. Trucco,G. Rimassa, «JADE PROGRAMMER’S

GUIDE», 2010

❖Foundation for Intelligent Pyhsical Agents: http://www.fipa.org

❖JADE : http://jade.tilab.com

62

http://www.fipa.org/
http://jade.tilab.com/

