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Abstract

Various empirical and theoretical models of the surface reflectance have been introduced so far. Most of these models are based on

functions with non-linear parameters and therefore faces some computational difficulties involved in non-linear optimization processes.

In this paper, we introduce a new approach for approximating Bidirectional Reflectance Distribution Functions (BRDF) by employing

response surface methodology. The proposed model employs principal component transformations of the explanatory variables which

are essentially functions of incoming and outgoing light directions. The resulting model is linear and can be used to represent both

isotropic and anisotropic reflectance for diffuse and glossy materials. Considering some widely used reflection models including the Ward

model, the Ashikhmin–Shirley model and the Lafortune model, we demonstrate empirically that satisfactory approximations can be

made by means of the proposed general, simple and computationally efficient linear model.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Building a comprehensive reflection model that describes
the interactions between light and materials is a funda-
mental problem in computer graphics. To synthesize a
realistic image of a scene, a complete description of
reflectance is required for each surface in the scene.
A class of functions called Bidirectional Reflectance
Distribution Functions (BRDF) has been widely used to
describe the surface reflectance [1].

Theoretically the BRDF is a function of a number of
factors including incident light direction, reflected light
direction, the wavelength and the surface position. Various
models ranging from empirical models to physically based
models for BRDFs have been developed to approximate
surface reflectance. Each model can have better approx-
imation over the others under certain conditions. Whatever
e front matter r 2008 Elsevier Ltd. All rights reserved.
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model is selected for a certain application, one needs to
determine its unknown parameters. A common approach for
determining the model parameters is to estimate them from
the experimental data based on the BRDF measurements.
Mostly the least squares techniques are used for estimating
the model parameters. However, most of the models are
defined by some non-linear functions and estimating the
underlying parameters is not straightforward.
There are several shortcomings in model fitting when a

BRDF is represented by a non-linear function [2]. One major
problem is that non-linear least squares estimation requires
employing some optimization algorithms. Depending on the
number of lobes used in modeling the BRDF, the correspond-
ing number of parameters to be estimated usually is large. For
example, when Lafortune et al. [3] model is chosen to fit an
isotropic material, there would be at least three and six non-
linear parameters which should be estimated for one lobe and
two lobe representations, respectively. Furthermore, optimiza-
tion results closely depend on the choice of initial values of the
non-linear parameters and a global minimum usually is not
guaranteed. Also computational cost of estimating the non-
linear parameters become high when large data set is used.
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In this paper, we introduce a representation based on
response surface models. Assuming a simplified BRDF
model can be expressed as functions of some variables
which are essentially defined to be functions of incoming
and outgoing direction vectors of the light only, we
propose to transform the variables of the underlying non-
linear reflectance model into an orthogonal system. The
new system has the same number of variables, namely the
principal components as the original system. Considering
these orthogonal explanatory variables, response surface
models are used to approximate the corresponding BRDF.
The resulting model is linear and can be used to represent
both isotropic and anisotropic diffuse and glossy reflec-
tions. Weighted least squares technique is used to estimate
the model parameters. Based on a data set, we demonstrate
that satisfactory approximations to BRDF of a given
diffuse and glossy surfaces can be made by means of the
proposed general, simple and computationally efficient
model for which no non-linear estimation is involved.

The next section gives a review of previous work. In
Section 3, the response surface model based on principal
components approach is described and weighted least
squares estimation of the corresponding model is introduced
in Section 4. Error of approximation for the proposed model
is given in Section 5. Some empirical results are presented in
Section 6 and Section 7 is devoted to discussions.

2. Previous work

Although there has been an extensive literature on
modeling surface reflectance, developing BRDF models
still is an active area of research. A good treatment of the
subject may be found in Ref. [4].

The most well known and one of the oldest reflectance
model developed to simulate the effects of the specular
reflection is the Phong model [5]. For specular surfaces, this
model assumes that the incoming light tends to bounce
off in the reflection direction. Fresnel effect and micro
geometry of a surface are important factors in BRDF
modeling. Considering the fact that a surface can
be modeled by using small and flat surfaces (microfacets)
with random angle and size, Ashikhmin et al. [6] and
Cook–Torrance [7] have presented more sophisticated
models. A comprehensive but computationally expensive
model based on physical theory was developed by He et al.
[8]. Oren and Nayar [9] presented a non-Lambertian diffuse
model to simulate the surfaces such as sand and plaster.
For anisotropic surfaces, Poulin and Fournier [10]
introduced a reflection and refraction model.

The BRDF technology has been extensively utilized in
computer graphics and a wide range of physically based
models have been developed along this line. Using these
models is problematic since the corresponding parameters
are not readily available and their functional forms present
some complexity [11].

Instead of computing a BRDF from a theoretical model
it might be more convenient to measure the reflectance
properties of the sample for certain cases [12]. Ward [13]
developed a method for acquiring BRDFs and introduced
a model to represent the reflectance of anisotropic surfaces.
A simple method for representing the BRDFs of a given
surface would be to sample the BRDF at various points
over the surface and apply an interpolation whenever is
needed. However, storage problems of the large data set,
existence of noise and missing observations are the limiting
factors for the practical applications of this approach. He
et al. [14] presented a hybrid representation based on using
spline patches.
All theoretical models can be fitted to a given data by

using non-linear estimation techniques [4]. On the other
hand, empirical models which do not necessarily reflect the
physical mechanism of the light material interaction have
been used to capture the reflectance effects [13,15].
Lafortune et al. [3] introduced an empirical model based
on a class of primitive functions with non-linear para-
meters providing a simple and compact representation.
Stark et al. [16] proposed new sets of coordinates which are
barycentric with respect to a triangular support to reduce
the dimensionality of several BRDF models.
A number of models based on representing BRDF

through linear functions have also been developed. Westin
et al. [17] used spherical harmonics to store BRDF data.
Schröder and Sweldens [18] have reported some results in
storing BRDFs by using wavelets. Koendrink et al. [19]
used Zernike polynomials for representing BRDFs in terms
of orthonormal basis functions to map the points on a
hemisphere onto a disk. Matusik et al. [2] employed the
principal component analysis to extract a relatively small
number of basis functions to span the entire space. Kautz
and McCool [20] have represented the BRDF as a sum of
two-variable separable functions. A common drawback of
these models is that the number of parameters to be
estimated is large.

3. Approximation of BRDF model

In this paper, we employ the well-known response surface

models with linear parameters to approximate the BRDF.
Response surface methodology is widely used to explore

the relationships between multiple explanatory variables
and one dependent variable. A response surface model is
defined as a polynomial function of order p in k variables
[21,22]. For example, a second-order response surface
model in two variables (p=2, k=2) may be written as

y ¼ a0 þ a1x1 þ a2x2 þ a3x1x2 þ a4x2
1 þ a5x2

2 þ e, (1)

where e represents the error term. This model reflects linear,
quadratic and interaction effects on the response variable y.
If the explanatory variables x1 and x2 are orthogonal then
the corresponding coefficient for the interaction term
becomes zero and removed from the model.
For a specified surface point at which the corres-

ponding BRDF was measured, a response surface model
of degree p with k variables may be written in terms of
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these variables as

y ¼ a0 þ a1X 1 þ a2X 2 þ � � � þ akX k þ akþ1X
2
1

þ akþ2X
2
2 þ � � � þ a2kX 2

k þ � � � þ aðp�1Þkþ1X
p
1

þ aðp�1Þkþ2X
p
2 þ � � � þ akpX

p
k þ � � �

þ ðfirst order interactionsÞ

þ ðhigher order interactionsÞ þ e. (2)

It may be noted that the above model is linear in all
parameters. The number of terms in the model increases
exponentially depending on the degree of the polynomial.
One way of simplifying this model is to transform
k-dimensional system into an orthogonal system. If the
hyper surface is defined in terms of the orthogonal
variables then the first-order interaction terms in Eq. (2)
will be zero since the new explanatory variables are
uncorrelated. Obviously the higher-order interaction terms
will not disappear from the model even if the correspond-
ing variables are uncorrelated. However, one may expect
that the higher-order interaction effects will be reduced
considerably when the underlying data space is trans-
formed into an orthogonal basis.

Based on the fact that every linear regression model can
be restated in terms of orthogonal variables which are also
linear functions of the explanatory variables, any ortho-
gonal transformation could be used for this purpose. We
chose to use principal components as the orthogonal
transforms of the explanatory variables. Although such
linear transformation lacks simple interpretation since each
of the transformed variables are the mixture of the original
variables, the new variables provide a unified approach for
estimating the model parameters [23–25].

The principal component analysis is mostly used for
reducing multidimensional measurement variables to a
smaller set of orthogonal variables [26]. The first principal
component accounts for a maximum amount of the total
variation represented in the complete set of original
variables. The second principal component accounts for a
maximum amount of the remaining variation, etc. This
property of principal components opens a way to represent
the BRDF surfaces in reduced dimensions.

Let Z1, Z2, y, Zp be the principal component
transformations of the respective variables X1, X2, y,
Xp. Using these orthogonal principal components the
corresponding BRDF surface can be approximated by
the following simplified model

f ¼ b0 þ b1Z1 þ b2Z2 þ � � � þ bkZk þ bkþ1Z
2
1

þ bkþ2Z
2
2 þ � � � þ b2kZ2

k þ � � � þ bðp�1Þkþ1Z
p
1

þ bðp�1Þkþ2Z
p
2 þ � � � þ bkpZ

p
k þ e, (3)

where bi, (i ¼ 0, 1, y, 3p) are the parameters and e is the
error term with mean zero and constant variance s2.
The proposed polynomial function in Eq. (3) provides a
flexible model for representing complex BRDF surfaces.
The parameters of the model can be easily estimated from
the measured BRDF data by using standard linear
regression methods. As opposed to non-linear models,
there is no optimization technique required to obtain
the parameter estimates when this model is used. However,
the use of this model is limited to diffuse and glossy
materials since representing highly specular materials
may require employing polynomial models of prohibitively
high degrees.
Choosing the most convenient set of explanatory

variables for the polynomial model is not a trivial problem.
In a typical application, one can consider the spherical
coordinates of incoming and outgoing direction vectors as
explanatory variables such that X1 ¼ yo, X2 ¼ fo, X3 ¼ yi,
X4 ¼ yi where yi and yo are the elevation angles; fi and fo

are the azimuth angels of incoming and outgoing direc-
tions, respectively. Another possibility is to use halfway
vector representation which has been used in many recent
BRDF models [27]. In this section, we proceed to define the
explanatory variables as functions of some direction angles
that have been employed by three widely used reflection
models, namely the Ward model, the Ashikhmin–Shirley
model and the Lafortune model and demonstrate the
application of our approach. Following the similar
approach as in Ref. [27] the diffuse contribution was
forced to Lambertian in these three reflection models.

3.1. The Ward model

The original Ward [13] model for isotropic materials can
be written as

f ¼ mþ r
1

fðn � uÞðn � vÞg1=2
expf�tan2 d=a2g

4pa2
, (4)

where m, r and a are the model parameters, n, u and v are
the normal, incoming and outgoing vectors, respectively,
and d is the angle between n and the halfway vector
h ¼ ðuþ vÞ= uþ vk k. Noting that

tan2 d ¼
sin2 d
cos2 d

¼
1

ðn � hÞ2
� 1, (5)

the Ward model can be rewritten as

f ¼ mþ rn 1

fðn � uÞðn � vÞg1=2
exp �

1=ðn � hÞ2 � 1Þ

a2

� �
, (6)

where r� ¼ r=ð4pa2Þ.
Based on this representation, we now define the

explanatory variables as X 1 ¼ n � h and X 2 ¼ ðn � uÞðn � vÞ.
Note that the reciprocity property is maintained with these
new variables. Let Z1 and Z2 be the principal component
transformations of the respective variables X1 and X2.
Using these orthogonal principal components the BRDF
surface can be approximated by the following simplified
polynomial model of degree p.

f ¼ b0 þ b1Z1 þ b2Z2 þ b3Z
2
1 þ b4Z2

2 þ � � � þ b2p�1Z
p
1

þ b2pZ
p
2 þ �, (7)



ARTICLE IN PRESS
A. Ozturk et al. / Computers & Graphics 32 (2008) 149–158152
where bi, (i ¼ 0, 1, y, 2p) are the parameters and e is the
error term with mean zero and constant variance s2.

3.2. The Ashikhmin–Shirley model

The Ashikhmin–Shirley model [28] used in this study is
defined as

f ¼ mþ r
ðn � hÞg

ðv � hÞmaxfn � u; n � vg
FresnelðF0; v � hÞ, (8)

where m, r, g and F0 are the model parameters and the
vectors n, u, v and h are defined as in Eq. (4). We define the
explanatory variables in such a way that the reciprocity
property of the underlying model is not violated. For the
Fig. 1. Fitted isotropic BRDF surface as a function of two principal

components (Cornell mystic lacquer).

Fig. 2. Vases rendered using polynomial models (based on the Lafortune

‘‘Quarry tile’’.

Table 1

L2 errors and the number of parameters used in polynomial models (based on

Material p ¼ 1 p ¼ 2 p ¼ 3

L2 #Par. L2 #Par. L2

Cayman lacquer 2.1983 7 2.1981 9 2.1981

Quarry tile 0.0324 7 0.0205 9 0.0142
above simplified model, we proceed to choose the following
three variables:

X 1 ¼ n � h,

X 2 ¼ v � h,

X 3 ¼ maxfn � u; n � vg. (9)

The principal component transformations Z1, Z2 and Z3

of the respective variables X1, X2 and X3 are then used in
Eq. (3) to obtain a polynomial model in three variables.
3.3. The Lafortune model

The Lafortune et al. [3] representation which satisfies the
reciprocity property is given by

f ¼ mþ faxðuxvxÞ þ ayðuyvyÞ þ azðuzvzÞg
g, (10)

where (ux; uy; uz) and (vx; vy; vz) are the components of the
incoming and outgoing direction vectors u and v,
respectively; m, ax, ay, az and g are the model parameters.
The direction vectors u and v are defined with respect to
local coordinate system at the surface location. The
corresponding coordinate system is transformed in such a
way that the z-axis is aligned to the surface normal and, x

and y axes to the principal directions of anisotropy.
For the Lafortune model, ax ¼ ay if the reflection is

isotropic, in other words, it is invariant with respect to
rotation of the surface around its normal. In this special
case one can define new variables as X 1 ¼ ðuxvx þ uyvyÞ

and X 2 ¼ ðuzvzÞ and then obtains the corresponding
principal component transformations Z1 and Z2. A sample
isotropic BRDF surface as a function of the first and
second principal components is illustrated in Fig. 1.
) of various degrees. Left: Cornell ‘‘Cayman lacquer’’. Right: CUReT

the Lafortune) in Fig. 2

p ¼ 4 p ¼ 5 p ¼ 6

#Par. L2 #Par. L2 #Par. L2 #Par.

11 2.1979 13 2.1972 15 2.1953 17

11 0.0116 13 0.0106 15 0.0093 17
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Fig. 3. Spheres rendered using nine analytical models. Top to bottom:

Ashikhmin–Shirley, Blinn–Phong, Cook–Torrance, Lafortune, Oren–

Nayar, Ward, Ward–Duer, Zernike polynomials (order ¼ 8), Polynomial

model (Ashikhmin–Shirley, p ¼ 5), Polynomial model (Lafortune, p ¼ 7),

and Polynomial model (Ward, p ¼ 7). Five isotropic materials are chosen

(based on CUReT). Left to right: Felt, Orange peel, Quarry tile, Slate_a,

Slate_b.
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4. Parameter estimation

As was stated above, a major problem in the application
of the non-linear BRDF models is the difficulty in
estimating their parameters. The quality of the fit depends
on a good starting guess. The proposed model in Eq. (3) is
linear in parameters and therefore multiple regression
techniques, which do not require any initial guess for the
parameters, can be directly used to obtain the least squares
estimates of the underlying parameters. The total number
of parameters to be estimated is kp+1. Another difficulty
in fitting BRDF models is the definition of the objective
function. The BRDF measurements are prone to outliers
especially in the region where incoming or outgoing
directions close to extreme grazing angles. In general, the
BRDF measurements obtained in this region are not
reliable [27]. The least squares fitting is known to be
sensitive to outliers because of the squaring the terms in the
objective function magnifies the error contribution of these
extreme values. To improve the fit of BRDF models, a
common approach has been to apply the weighted least
squares technique.

In this work, we adopted the following objective
function proposed by Ngan et al. [27]

jðsÞ ¼
Sn

i¼1wi cos yifbi � f ðui; vi; sÞg½ �
2

Sn
i¼1wi

� �1=2
, (11)

where s is the parameter vector of the model, bi, ui and vi

stands for the ith measured BRDF sample of size n, and the
corresponding incoming and outgoing light direction vectors,
respectively, wi is the ith solid angle correction term. This
metric for estimating the parameters of a model is known as
the L2 metric in statistical literature. Following the work of
Ngan et al. [27], we eliminated the measured BRDF values
with incoming or outgoing angles larger than 801 to avoid
possible outliers when estimating the parameters.

5. Approximation errors

It is obvious that the polynomial models do not meet the
energy conservation property of BRDF. If any selected
model provides a good representation for a BRDF surface
then the corresponding polynomial model should also
reflect a similar behavior. However, the polynomial model
used is an approximation to this BRDF surface and
therefore it encounters some errors. This error created by
the model inadequacy can be used to explain the deviation
from the true model.

The least squares estimators of the parameters in Eq. (3)
are given by

b̂ ¼ ðZ0ZÞ�1Z0f, (12)

where f is an n� 1 vector of measured BRDFs, b̂ is a ðkpþ

1Þ � 1 vector, Z is an n� ðkpþ 1Þ design matrix whose ith
row (i ¼ 1, 2, y, n) is

zi ¼ f1Z1iZ2i � � �Zki � � �Z
p
1i;Z

p
2i � � �Z

p
kig, (13)
and Z1i;Z2i; . . . ;Zki are the ith principal components of the
explanatory variables. If the model in Eq. (3) is a true
model for representing the BRDF measurements then b̂ is
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an unbiased estimate of b [29]. However, the model itself in
Eq. (3) is an approximation of the true model. The mean
squared error for the predicted model evaluated at z, may
be expressed as

MSE¼ Eff ðz; b̂Þ � Zðz; aÞg2

¼ Vff ðz; b̂Þg þ fEðf ðz; b̂ÞÞ � Zðz; aÞg2

¼ zðZ0ZÞ�1z0s2 þ fzðZ0ZÞ�1Z0Zðz;aÞ � Zðz; aÞg2, (14)
Table 3

L2 errors and PSNR values of various models based on six isotropic material

BRDF model Beige-fabric Blue-metallic-paint

L2 PSNR L2 PSNR

Ashikhmin–Shirley 0.0053 46.043 0.0150 39.043

Blinn–Phong 0.0104 37.683 0.0228 31.570

Cook–Torrance 0.0080 42.629 0.0172 39.589

Lafortune 0.0075 42.113 0.0132 38.099

Oren–Nayar 0.0105 37.706 0.0540 26.654

Ward 0.0101 38.055 0.0146 34.977

Ward–Duer 0.0093 38.563 0.0171 38.899

Poly. (Ashikhmin–Shirley, p ¼ 3) 0.0038 48.104 0.0331 34.291

Poly, (Lafortune, p ¼ 5) 0.0056 45.083 0.0314 35.535

Poly. (Ward, p ¼ 5) 0.0064 45.574 0.0347 31.333

Fig. 4. Phlegmatic Dragon Figure. Fitting the measured ‘‘green-latex’’ [2]

Ashikhmin–Shirley, Blinn–Phong, Cook–Torrance, Lafortune, Polynomial

Ward–Duer, Polynomial model (Lafortune, p ¼ 5), Polynomial model (Ward,

Table 2

L2 errors of various models based on five isotropic materials in Fig. 3

BRDF model Felt Orange p

Ashikhmin–Shirley 0.0190 0.0217

Blinn–Phong 0.0518 0.0626

Cook–Torrance 0.0229 0.0213

Lafortune 0.0170 0.0245

Oren–Nayar 0.0571 0.0740

Ward 0.0385 0.0420

Ward–Duer 0.0238 0.0219

Zernike (order ¼ 8) 0.0087 0.0126

Poly. (Ashikhmin–Shirley, p ¼ 5) 0.0090 0.0206

Poly. (Lafortune, p ¼ 7) 0.0126 0.0227

Poly. (Ward, p ¼ 7) 0.0228 0.0277
where E and V stand for the expectation and variance
operators, respectively, f ðz; b̂Þ is the estimated model,
Z is the true model, a is the parameter vector of the true
model and

fZðz; aÞg ¼ fZðz1;aÞ; Zðz2;aÞ; . . . ; Zðzn;aÞg
0. (15)

As may be seen from Eq. (14) the approximation error is
determined by the second term which is known as the bias

term of the fitted model. Maximum approximation error as
s (based on data from Ref. [2])

Dark-blue-paint Green-latex Orange-paint Yellow-plastic

L2 PSNR L2 PSNR L2 PSNR L2 PSNR

0.0043 42.330 0.0040 43.286 0.0038 46.710 0.0071 39.321

0.0109 34.671 0.0064 38.841 0.0100 39.573 0.0143 36.288

0.0035 43.425 0.0037 43.255 0.0037 46.789 0.0068 39.544

0.0056 42.353 0.0036 44.434 0.0061 45.504 0.0086 39.709

0.0129 33.120 0.0076 38.507 0.0119 38.228 0.0153 35.654

0.0091 36.824 0.0052 40.540 0.0085 41.683 0.0130 36.976

0.0056 39.619 0.0037 43.249 0.0059 41.680 0.0103 37.663

0.0064 42.514 0.0029 47.707 0.0049 47.429 0.0082 43.864

0.0060 42.472 0.0029 46.507 0.0049 47.244 0.0089 41.809

0.0040 41.873 0.0026 49.557 0.0039 45.523 0.0061 43.561

BRDF with the eight models. From left to right; top row: measured,

model (Ashikhmin–Shirley, p ¼ 3). Bottom row: Oren–Nayar, Ward,

p ¼ 5).

eel Quarry tile Slate_a Slate_b

0.0165 0.0121 0.0223

0.0369 0.0196 0.0586

0.0136 0.0107 0.0236

0.0117 0.0070 0.0184

0.0429 0.0249 0.0711

0.0241 0.0124 0.0383

0.0137 0.0109 0.0243

0.0069 0.0059 0.0068

0.0098 0.0063 0.0114

0.0093 0.0062 0.0165

0.0122 0.0092 0.0266



ARTICLE IN PRESS
A. Ozturk et al. / Computers & Graphics 32 (2008) 149–158 155
a function of the bias term over the sample space may be
expressed as

dmax ¼ max
1pipn

fziðZ
0ZÞ�1Z0Zðz;aÞ � Zðzi;aÞg

2. (16)

For a completely specified true model and the design
matrix Z, calculating the corresponding maximum approx-
imation error is straightforward.
6. Results

To investigate some empirical properties of the proposed
model we have used the CUReT database [30] which
contains BRDF measurements for red, green and blue
color channels and for each of the 61 different materials.
Fig. 5. Renderings of spheres based on the measured ‘‘blue-metallic-paint’’ [

Ashikhmin–Shirley, Blinn–Phong, Cook–Torrance, Lafortune, Polynomial

Ward–Duer, Polynomial model (Lafortune, p ¼ 5), Polynomial model (Ward,

Fig. 6. The L2 error of eight analytic models to CUReT data set of 52 isotro

model for visualization purpose.
Measurements are obtained for each of the 205 combinations
of incoming and outgoing angles. We have also used sample
data sets of seven different isotropic materials ‘‘Cayman
lacquer’’ from Cornell University data base [31], and ‘‘beige-
fabric’’, ‘‘blue-metallic-paint’’, ‘‘dark-blue-paint’’, ‘‘green-
latex’’, ‘‘orange-paint’’, ‘‘yellow-plastic’’ from Matusik
et al. [2] based on 1439 and 1,458,000 BRDF measurements,
respectively. In all cases except the Oren–Nayar, the Zernike
and the polynomial models, only one specular lobe was used
and the diffuse contribution was forced to Lambertian.
The accuracy of the model depends on the degree of the

polynomial p. However, increasing accuracy is gained at
the expense of introducing additional parameters in the
model. To illustrate this situation, we rendered a vase
model by employing polynomial approximations to one
2] BRDF with the eight models. From left to right; top row: measured,

model (Ashikhmin–Shirley, p ¼ 3). Bottom row: Oren–Nayar, Ward,

p ¼ 5).

pic BRDFs. The materials are sorted in the errors of the Cook–Torrance
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lobe Lafortune model with a global illumination using
Cornell Cayman lacquer and CUReT quarry tile. Fig. 2
shows vase models placed in a lighting environment with
polynomial models of varying degrees. The corresponding
L2 errors were also computed and given in Table 1. It is
seen from the figure and from the L2 errors that the image
quality improves with the polynomial models of higher
degrees. The difference between the specular reflectance of
the materials is clearly observed.

In order to compare the proposed linear model with
some of its competitors, we have selected eight commonly
used models, namely Ashikhmin–Shirley [28], Blinn–Phong
[32], Cook–Torrance [7], Lafortune [3], Oren–Nayar [9],
Ward [13], Ward–Duer [33], and Zernike polynomials (of
order 8) [19]. Five different diffuse and glossy materials,
namely Felt, Orange peel, Quarry tile, Slate(a), Slate(b)
Fig. 7. The fitting errors (L2 errors) of two analytic linear models to

CUReT data set of 52 isotropic BRDFs. The BRDFs are sorted in the

errors of the Polynomial model (Lafortune, p ¼ 8) (red) for visualization

purpose. For our model, p is both 2 (9 free parameters) and 8 (21 free

parameters). For Zernike polynomials, both order 2 (5 free parameters)

and order 8 (55 free parameters) are calculated.

Fig. 8. Left: image based on the measured BRDF ‘‘orange-paint’’ [2]. Middle

rendered using the same polynomial model (Lafortune, p ¼ 5) with incoming

the reference and the rendered images.
from the CUReT data set were selected and all models
including the polynomial models of various degrees were
fitted to these data sets. Fig. 3 illustrates the rendered
spheres based on using each of the above models and the
materials. Real images were not available for the CUReT
data set but we consider the images based on Zernike
polynomials as close approximations to the real images and
used them as test images for comparison purpose. It may
be noted from the figure that the images obtained by the
proposed model show close agreement with those of
Zernike polynomials. For a quantitative comparison L2
metric was used. Table 2 compares the BRDF models on
the basis of the L2 for various materials.
Fig. 4 shows Phlegmatic Dragon models obtained using

the polynomial models and seven non-linear BRDF models
based on ‘‘green-latex’’ data from Matusik et al. [2].
Measured image to represent the reference image was also
shown in the figure. Difference images between the
reference image and the rendered image were obtained as
in Ref. [34] and displayed in the corresponding insets in
such a way that the darker portions of the difference image
indicate higher difference. To improve visibility all
difference images in the figure are standardized using the
same scaling factor. For each model, corresponding L2
errors and peak signal-to-noise ratio (PSNR) values based
on six isotropic materials including beige-fabric, blue-
metallic-paint, dark-blue-paint, green-latex, orange-paint
and yellow-plastic were calculated and presented in
Table 3. We observe that L2 errors based on our
polynomial models are uniformly smaller than the corre-
sponding errors based on all other models including the
Ashikhmin–Shirley, the Lafortune and the Ward models.
Rendering of the spheres based on three different

polynomial approximations for ‘‘blue-metallic-paint’’
which is known to be highly glossy material is presented
in Fig. 5. The corresponding L2 errors and the PSNR
values are given in Table 3. Visual inspection of the
rendered spheres indicates that the underlying polynomial
models did not provide satisfactory approximations for
this highly glossy material.
: scene rendered using polynomial model (Lafortune, p ¼ 5). Right: scene

and outgoing light directions exchanged. Insets show a difference between
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Table 4

Average fitting times (in seconds) of BRDF models on CUReT dataset (52 isotropic materials were chosen)

BRDF model Average fitting time BRDF model Average fitting time

Ashikhmin–Shirley 0.33175 Ward 0.29025

Blinn–Phong 0.38900 Ward–Duer 0.26925

Cook–Torrance 0.34725 Poly. (Ashikhmin–Shirley, p ¼ 5) 0.01567

Lafortune 0.36540 Poly. (Lafortune, p ¼ 7) 0.01565

Oren–Nayar 0.15596 Poly. (Ward, p ¼ 7) 0.01565

Times are calculated on a Pentium D 2.66GHz 2Gb RAM machine.

A. Ozturk et al. / Computers & Graphics 32 (2008) 149–158 157
To provide a further comparison with the other BRDF
models, we fitted each of the previously used seven BRDF
models and the polynomial models to the 52 different
isotropic materials from the CUReT data set. L2 errors
based on the measured BRDF were plotted in Fig. 6. In
this figure, the materials are sorted with respect to L2
errors of the Cook–Torrance model to provide a better
visualization. It can be seen from the figure that our
polynomial approximations based on the Ashikhmin–Shir-
ley, the Lafortune and the Ward models have the lowest
errors in 45, 40 and 23 cases out of 52 cases, respectively, as
compared to the non-linear models listed as the first seven
rows of the legend of Figs. 6 and 7 compares the
polynomial models with the Zernike Polynomial models
in a similar fashion. It is seen that representational
adequacy of the models increases with the degree of the
models. However, the numbers of the parameters estimated
are 21 and 55 for the polynomial approximation based on
Lafortune model of degree 8 and the Zernike model of
order 8, respectively.

The reciprocity property of the polynomial model for the
Lafortune model is clearly seen in Fig. 8.

Average fitting times in seconds of fitting above BRDF
models to the 52 isotropic materials in the CUReT data set
were obtained on a Pentium D 2.66GHz Computer are
shown in Table 4. The polynomial models have resulted the
lowest running times overall of the other models.

7. Conclusions

In this paper, we have presented a general approach for
modeling both isotropic and anisotropic diffuse and glossy
materials. The proposed model for describing surface
reflectance is a response surface model based on principal
component transformations of the underlying explanatory
variables. Since our model essentially is a multivariable
polynomial, it is flexible and can be easily fitted to
experimental data by employing standard multiple regres-
sion techniques. Furthermore, the underlying model is
linear in the parameters and therefore no difficulty is
encountered in parameter estimation as opposed to BRDF
models having non-linear parameters.

Using several BRDF test data, the corresponding
renderings with the proposed model were shown to be
visually convincing and can be used for real-time render-
ing.
In this paper, our approach was demonstrated using the

Ashikhmin–Shirley, the Lafortune and the Ward repre-
sentations. However, the proposed approach is not
restricted to these cases only and can be generalized to
approximate other models as well.
An interesting property of our approach in modeling

BRDF is that the variables used in the polynomial model
are uncorrelated so that under normality assumption
they can be treated as independent variables. Although
normality assumption does not always hold in most
practical applications, this property of the uncorrelated
variables could be exploited to provide a ground for
developing an efficient importance sampling procedure.
Our work will be continued along the line of approximat-
ing some other non-linear models by the polynomial
models and developing corresponding importance sam-
pling schemes.
With the introduction of response surface models for

representing BRDFs we believe that the corresponding
rendering process can be easily implemented for a wide
range of applications and will be of help for the researchers
who seek developing general, flexible and computationally
efficient models.
References

[1] Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, Limperis T.

Geometric considerations and nomenclature for reflectance. US

Dept. of Commerce, National Bureau of Standards; 1977.

[2] Matusik W, Pfister H, Brand M, McMillian L. A data driven

reflectance model. ACM Transactions on Graphics (TOG) 2003;

22(3):759–69.

[3] Lafortune EPF, Foo S-C, Torrance KE, Greenberg DP. Non-linear

approximation of reflectance functions. In: Proceedings of SIG-

GRAPH’97, 1997, p. 117–26.

[4] Moller TA, Haines E. Real-time rendering. 2nd ed. Massachusetts:

A.K. Peters Ltd.; 2002.

[5] Phong BT. Illumination for computer generated pictures. Commu-

nications of the ACM 1975;18(6):311–7.

[6] Ashikhmin M, Premoze S, Shirley P. A microfacet based BRDF

generator. In: Proceedings of SIGGRAPH’00, 2000, p. 65–74.

[7] Cook RL, Torrance KE. A reflectance model for computer graphics.

In: Computer Graphics (SIGGRAPH’81 proceedings) 1981;15(3):

307–16.



ARTICLE IN PRESS
A. Ozturk et al. / Computers & Graphics 32 (2008) 149–158158
[8] He XD, Torrance KE, Sillion FX, Greenberg DP. A comprehensive

physical model for light reflection. In: Proceedings of SIGGRAPH’91,

1991, p. 175–86.

[9] Oren M, Nayar SK. Generalization of Lambert’s reflection model. In:

Proceedings of SIGGRAPH’94, 1994, p. 239–46.

[10] Poulin P, Fournier A. A model for anisotropic reflection. In:

Proceedings of SIGGRAPH’90, 1990, p. 273–82.

[11] Marschner SR, Westin SH, Lafortune EPF, Torrance KE. Image-

based bidirectional reflectance distribution function measurement.

Applied Optics 2000;39(16):2592–600.

[12] Rusinkiewicz S. A survey of BRDF representation for computer

graphics. Written for CS348C, Stanford University, 1997, /http://

www.cs.princeton.edu/�smr/cs348c97/surveypaper.htmlS.

[13] Ward GJ. Measuring and modeling anisotropic reflection. In:

Proceedings of SIGGRAPH’92, 1992, p. 265–72.

[14] He XT, Heynen PO, Phillips RL, Torrance KE, Salesin DH,

Greenberg DP. A fast and accurate light reflection model. In:

Proceedings of SIGGRAPH’92, 1992, p. 253–4.

[15] Lensch HPA, Goesele M, Kautz J, Heidrich W, Seidel H-P. Image-

based reconstruction of spatially varying materials. In: Rendering

techniques ‘01 (proceedings of the twelfth eurographics workshop on

rendering). London: Springer; 2001. p. 103–14.

[16] Stark MM, Arvo J, Smits B. Barycentric parameterizations for

isotropic BRDFs. IEEE Transactions on Visualization and Computer

Graphics 2005;11(2):126–38.

[17] Westin SH, Arvo JR, Torrance KE. Predicting reflectance functions

from complex surfaces. In: Proceedings of SIGGRAPH’92, 1992,

p. 255–64.

[18] Schroder P, Sweldens W. Spherical wavelets: efficiently representing

functions on the sphere. In: Proceedings of SIGGRAPH’95, 1995,

p. 161–72.

[19] Koenderink JJ, van Doorn AJ, Stavridi M. Bidirectional reflection

distribution function expressed in terms of surface scattering modes.

In: Computer vision-ECCV’96 (proceedings of the fourth European

conference on computer vision—volume II). Cambridge: Springer;

1996. p. 28–39.

[20] Kautz J, McCool MD. Interactive rendering with arbitrary BRDFs

using separable approximations. In: Rendering techniques ‘99
(proceedings of the tenth eurographics workshop on rendering).

Granada: Springer; 1999. p. 247–60.

[21] Cochran WG, Cox GM. Experimental designs. 2nd ed. New York:

Wiley; 1966.

[22] Montgomery DC, Myers RH. Response surface methodology:

process and product optimization using designed experiments.

New York: Wiley; 1995.

[23] Chatterjee BP, Price P. Regression analysis by example. 2nd ed.

New York: Wiley; 1977.

[24] Kendall MG. A course in multivariate analysis. London: Charles

Griffin; 1957.

[25] Press SJ. Applied multivariate analysis. 1st ed. New York: Holt,

Rinehart & Winston; 1972.

[26] Overall JE, Klett CJ. Applied multivariate analysis. 1st ed.

New York: McGraw Hill; 1972.

[27] Ngan A, Durand F, Matusik W. Experimental analysis of BRDF

models. In: Rendering techniques ‘05 (proceedings of the euro-

graphics symposium on rendering). Konstanz: Eurographics Associa-

tion; 2005. p. 117–226.

[28] Ashikhmin M, Shirley P. An anisotropic Phong light reflection

model. Technical report. University of Utah, 2000, /http://

www.cs.utah.edu/�shirley/papers/jgtbrdf.pdfS.

[29] Draper NR, Smith H. Applied regression analysis. 2nd ed.

New York: Wiley; 1966.

[30] Curet: Columbia-Utrecht reflectance and texture database, /http://

www1.cs.columbia.edu/CAVE/software/curet/index.phpS.

[31] Cornell University. Program of computer graphics online resource:

reflectance data, /http://www.graphics.cornell.edu/online/measurements/

reflectance/index.htmlS.
[32] Blinn JF. Models of light reflection for computer synthesized

pictures. In: Proceedings of SIGGRAPH’77, 1977, p. 192–8.

[33] Duer A. On the Ward model for global illumination. Technical

report, 2004, /http://www.uibk.ac.at/mathematik/duer/abstract_

ward_model.pdfS.

[34] Edwards D, Boulos S, Johnson J, Shirley P, Ashikhmin M, Stark M,

et al. The halfway vector disk for BRDF modeling. ACM

Transactions on Graphics (TOG) 2006;25(1):1–18.

http://www.cs.princeton.edu/~smr/cs348c97/surveypaper.html
http://www.cs.princeton.edu/~smr/cs348c97/surveypaper.html
http://www.cs.princeton.edu/~smr/cs348c97/surveypaper.html
http://www.cs.utah.edu/~shirley/papers/jgtbrdf.pdf
http://www.cs.utah.edu/~shirley/papers/jgtbrdf.pdf
http://www.cs.utah.edu/~shirley/papers/jgtbrdf.pdf
http://www1.cs.columbia.edu/CAVE/software/curet/index.php
http://www1.cs.columbia.edu/CAVE/software/curet/index.php
http://www.graphics.cornell.edu/online/measurements/reflectance/index.html
http://www.graphics.cornell.edu/online/measurements/reflectance/index.html
http://www.uibk.ac.at/mathematik/duer/abstract_ward_model.pdf
http://www.uibk.ac.at/mathematik/duer/abstract_ward_model.pdf

	Linear approximation of Bidirectional Reflectance Distribution Functions
	Introduction
	Previous work
	Approximation of BRDF model
	The Ward model
	The Ashikhmin-Shirley model
	The Lafortune model

	Parameter estimation
	Approximation errors
	Results
	Conclusions
	References


