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Abstract
Generating photo-realistic images through Monte Carlo rendering requires efficient representation of light–surface
interaction and techniques for importance sampling. Various models with good representation abilities have
been developed but only a few of them have their importance sampling procedure. In this paper, we propose a
method which provides a good bidirectional reflectance distribution function (BRDF) representation and efficient
importance sampling procedure. Our method is based on representing BRDF as a function of tensor products.
Four-dimensional measured BRDF tensor data are factorized using Tucker decomposition. A large data set is
used for comparing the proposed BRDF model with a number of well-known BRDF models. It is shown that the
underlying model provides good approximation to BRDFs.
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1. Introduction

The problem of developing an adequate representation for
the distribution of light scattered from a surface has been
studied extensively in computer graphics. The bidirectional
reflectance distribution function (BRDF) is commonly used
to describe surface reflectance. A wide range of models have
been proposed to approximate the BRDFs.

The incoming radiance (Li) and outgoing radiance (Lo)
are closely related through the BRDF (ρ) by the following
well-known relationship:

Lo( �ωo) =
∫

�

Li( �ωi)ρ( �ωi, �ωo)( �ωi · n) d �ωi, (1)

where �ωi = (θi, φi) and �ωo = (θo, φo) are the incoming and
outgoing direction vectors with elevation and azimuth an-
gles θ and φ, respectively, and n is the surface normal
vector.

Computing the outgoing radiance involves two important
issues that need to be resolved. First we need to find an

adequate model for representing the BRDF, and second we
need to develop an efficient importance sampling procedure
for evaluating the integral in Eq. (1) by using Monte Carlo
techniques. Various models with good representation abilities
have been developed but a few of them have their importance
sampling procedure.

In this work, we propose to represent the BRDF by em-
ploying tensor products. Tensor products are based on fac-
torizing the underlying data into certain components. Using
different techniques, several researchers have investigated
the possibility of BRDF factorization for real-time render-
ing [KM99, MAA01]. Lawrence et al. [LRR04] used non-
negative matrix factorization (NMF) to represent BRDF as
a product of univariate probability distributions. They used
this factorization especially for efficient importance sam-
pling. Our approach provides a general method for both effi-
cient BRDF representation and simple importance sampling
procedure. Empirical results show that the proposed method
achieves high compression ratios CRs while maintaining cer-
tain properties of BRDF including Fresnel effects and off-
specularity.
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A physically plausible BRDF representation should dictate
non-negativity, Helmholtz reciprocity and energy conserva-
tion [NNSK99, EBJ∗06]. Our visually plausible representa-
tion satisfies the non-negativity property, but not the others,
namely, the Helmholtz reciprocity and the energy conserva-
tion.

For representing the measured BRDF, we use Tucker de-
composition algorithm. This algorithm is used for computing
the tensor factors. Our BRDF model is based on halfway vec-
tor representation of the BRDF, followed by a compact and
accurate decomposition of this four-dimensional (4D) repre-
sentation into univariate factors. We evaluate the 4D BRDF
as the sum of terms, each of which is defined as the product
of four univariate functions.

The proposed method also lends itself to developing an
efficient and simple importance sampling algorithm. The
most significant factors are identified and selected by us-
ing Tucker’s orthogonal projections, and samples are gen-
erated from the bivariate probability distributions of these
factors. Extensive empirical comparisons with a number of
well-known models have shown that the proposed model pro-
vides good approximation to measured BRDFs for various
isotropic and anisotropic materials.

2. Previous Work

The BRDF is the core part of the rendering equation [Kaj86].
Therefore, a wide range of BRDF models have been pro-
posed to represent surface reflectance. These models can be
classified in two main groups: analytical BRDF models and
data-driven BRDF models.

2.1. Analytical BRDF models

One of the most well-known analytical model, is the Phong
model [Pho75]. An improved version of the Phong model
[Pho75] is the Blinn–Phong model [Bli77]. While the Phong
model is based on reflection vector, the Blinn–Phong model
is based on halfway vector. The halfway vector-based BRDF
representation is more convenient than the reflection vector-
based representation [NDM05]. Ward [War92] proposed a
simple formula to describe isotropic and anisotropic surface
reflectance. Lafortune et al. [LFTG97] obtained a general-
ization of the Phong BRDF model. This generalized Phong
model can represent non-Lambertian diffuse reflection, retro-
reflection and the Fresnel effects. Duer [Due05] presented a
variation of the Ward BRDF model, known as the Ward–Duer
BRDF model. This model has a different normalization factor
from the Ward representation, and thus improves the fitting
results [NDM05]. The Phong, the Blinn-Phong, the Ward, the
Ward-Duer and the Lafortune models are phenomenological
models. Some physically based BRDF models also have been
developed. The BRDF models of this category (e.g. [TS67,
CT81, HTSG91, ON94]) are more sophisticated and can

represent effects such as a Fresnel reflection and rough micro-
geometry. Anisotropic BRDF models [Kaj85, PF90, War92,
LFTG97, AS00, Due05, EBJ∗06] can represent the reflective
properties of oriented surfaces such as brushed metal, satin
and velvet.

The aforementioned analytical BRDF models have non-
linear parameters. On the other hand, the BRDF can be ap-
proximated using linear functions [WAT92, SS95, KvDS96,
LF97, OKBG08]. Westin et al. [WAT92] used spherical har-
monics; Koenderink et al. [KvDS96] used Zernike polynomi-
als; Schröder and Sweldens [SS95] and Lalonde and Fournier
[LF97] used wavelets; Stark et al. [SAS05] proposed a new
barycentric coordinate system with respect to a triangular
support for reducing the dimensionality of some BRDF mod-
els; and Öztürk et al. [OKBG08] used Principal Component
(PC) transformations of some explanatory variables for ap-
proximating BRDFs linearly. The main disadvantage of these
linear BRDF models is that they require a large number of
coefficients to represent BRDFs accurately.

2.2. Data-driven BRDF models

Acquiring dense measurements of the BRDF and using these
measurements directly in the rendering process have been
used in [MPBM03]. Unfortunately, this technique has large
storage complexity. Therefore, accurate and compact rep-
resentations of measured BRDFs using factorization have
been investigated [KM99, MAA01, LRR04]. In all cases, 4D
BRDFs have been factored into product of two-dimensional
(2D) functions. More importantly, only Lawrence et al.
[LRR04] have developed an importance sampling procedure.
For isotropic BRDFs, Romeiro et al. [RVZ08] reduced the
measured BRDF data into a 2D representation by averaging
BRDF around φd, which is one of the parameters defin-
ing incident vector in the Rusinkiewicz [Rus98] coordinate
system.

2.3. Importance sampling

Many analytical BRDF models [Pho75, Bli77, War92,
LFTG97, AS00, Due05, EBJ∗06] have their own impor-
tance sampling procedures. Importance sampling algorithms
are not available for some analytical BRDF models [TS67,
CT81]. Some other analytical models which have impor-
tance sampling schemes, often have problems approximat-
ing more complex BRDFs. Furthermore, fitting these ana-
lytical BRDF models to measured data often is not trivial
and non-linear optimizers must be used. These optimizers
need careful user intervention when fitting more than two
specular lobes [LRR04]. Lawrence et al. [LRR04] presented
a factored BRDF model, which has an efficient importance
sampling procedure. Lawrence et al. [LRR05] proposed an
importance sampling algorithm which depends on polygo-
nal approximation of multi-dimensional tabular cumulative
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distribution functions (cdfs) using Douglas–Peucker algo-
rithm. This algorithm requires large storage space but pro-
vides low variance results for BRDF sampling. This al-
gorithm also enables importance sampling of environment
maps. A sampling algorithm proposed by Montes et al.
[MUGL08], is based on rejection sampling of hierarchical
parameterless probability distribution functions (pdfs). Their
hierarchical structure reduces the number of fails in rejection
sampling, thus it increases the sampling speed and reduces
the variance.

2.4. Tensor approximation using factorization

In computer graphics, tensor approximations using factor-
ization [KB09] have been used for data compression [VT04,
WWS∗05]. Sun et al. [SZC∗07] employed Tucker decom-
position to decompose the BRDF data. They used this de-
composition method to represent BRDF in a real-time global
illumination algorithm. They decomposed the data into three
2D matrices and a core tensor. Following a similar decompo-
sition method we use univariate tensor functions to estimate
the BRDF recursively. Furthermore, we use Tucker decompo-
sition to develop an efficient important sampling procedure.

Similarly we also employ Tucker decomposition to repre-
sent the measured BRDF data, but opposed to storing data
as 2D matrices and core tensor we evaluate the 4D BRDF as
the sum of terms, each of which is defined as the product of
four univariate functions.

3. Tensors and Tucker Factorization

Tensors are geometric entities presented to generalize the
notion of scalars, vectors and matrices to higher orders. The
order of the tensor is defined as the number of dimensions
used to represent the multi-way arrays. For example, a first-
order tensor can be viewed as a vector, a second-order tensor
as a matrix, a third-order tensor as a cube and so on.

The problem of expressing a tensor as a product of cer-
tain factors was first studied by Hitchcock in 1927 [Hit27a,
Hit27b] but it is named after the work of Tucker [Tuc63,
Tuc64, Tuc66]. Basically, the Tucker factorization is a gen-
eralization of higher order principal component analysis that
decomposes a tensor into a set of matrices and one small
core tensor. It has been used widely in various fields includ-
ing image compression, data mining and psychometrics. A
good review of the topic can be found in [KB09].

The Tucker decomposition of a three-dimensional
(3D) matrix T = {tijk}, i = 1, . . . , I , j = 1, . . . , J , k =
1, . . . , K into a small 3D matrix G = {gpqr}, p =
1, . . . , P , q = 1, . . . , Q, r = 1, . . . , R and three 2D ma-
trices X = {xip}, Y = {yjq}, Z = {zkr}, is illustrated in
Figure 1 . Based on this representation, a tensor element

Figure 1: Tucker factorization of a 3D tensor: Three uni-
variate factors and a scalar constant representing the core
tensor.

tijk can be approximated by

tijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrxipyjqzkr, (2)

The 4D BRDF data can be represented through a Tucker
representation in a similar way as explained in the above
example. Our BRDF model is based on the halfway vector
representation. The halfway vector �ωh = (θh, φh) is defined
in terms of �ωi and �ωo as

�ωh = �ωi + �ωo

‖�ωi + �ωo‖ . (3)

The halfway vector parametrization aligns certain BRDF fea-
tures with directions of certain BRDF phenomena [NDM05].

Non-negativity of the estimated BRDF values is an impor-
tant issue to consider in modelling BRDF data. Lawrence
et al. [LRR04] have employed NMF algorithm to avoid
negative BRDFs. In this paper we used the logarithmic trans-
formation of the measured BRDF data. The logarithmic trans-
formation not only provides a more convenient input for the
Tucker factorization but also eliminates the problem of esti-
mated negative BRDF values.

For a given 4D sample matrix B = {bijkl}, i =
1, . . . , Nθh

, j = 1, . . . , Nφh
, k = 1, . . . , Nθo , l = 1, . . . ,

Nφo , where Nθh
, Nφh

,Nθo and Nφo are the sampling resolu-
tions for each tensor axis, corresponding expression for the
BRDF can be written as

bijkl ≈
nθh∑
p=1

nφh∑
q=1

nθo∑
r=1

nφo∑
s=1

gpqrsxipyjqzkrwls, (4)

where X = {xip}, p = 1, . . . , nθh
, Y = {yjq}, q = 1, . . . ,

nφh
, Z = {zkr}, r = 1, . . . , nθo and W = {wls}, s = 1, . . .

, nφo are the factor matrices and G = {gpqrs} is the core
tensor matrix and nθh

, nφh
, nθo and nφo are the Tucker

parameters. When nθh
, nφh

, nθo and nφo are smaller than
Nθh

, Nφh
, Nθo and Nφo , respectively, then the corresponding
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core matrix G can be viewed as a compressed version of the
BRDF matrix B.

4. Approximating the BRDF Using the Tucker
Factorization

As is seen from Eq. (4), the Tucker factorization involves
the evaluation of four nested loops, each of which requires
a large number of iterations. Naturally, the accuracy of the
approximation is improved at the expense of increased com-
putational cost. For certain applications the underlying cost
can be prohibitively large. On the other hand, decreasing
the number of iterations would cause large approximation
errors. To provide an intermediate solution to the problem,
we propose first to simplify the approximation procedure by
setting the parameters nθh

, nφh
, nθo and nφo of the Tucker

factorization all to 1 in Eq. (4) and then reduce the error
of approximation in a stepwise manner. From the point of
practical application, it turns out that this approach not only
provides a simple approximation to the BRDF but is also a
good ground for importance sampling.

Based on the simplified expression nθh
= nφh

= nθo =
nφo = 1, the corresponding Tucker approximation for a 4D
BRDF can be expressed as

log(bijkl) ≈ gf 1(θhi)f2(φhj)f3(θok)f4(φol), (5)

where g is the core tensor which is a scalar for this
simplified case; f 1(θhi), f 2(φhj), f 3(θok) and f 4(φol) are
univariate tensor functions evaluated at θhi, φhj, θok and
φol; and i = 1, . . . , Nθh

, j = 1, . . . , Nφh
, k = 1, . . . , Nθo

and l = 1, . . . , Nφo are the 4D BRDF matrix indices.

Clearly, Eq. (5) provides a rough approximation to the
BRDF. To improve the accuracy of this approximation we
propose applying the Tucker factorization recursively on the
corresponding error term. The first approximation model in
Eq. (5) can be rewritten as

B0 = B′
0 + e1, (6)

where B0 is the data matrix based on logarithms of the
BRDFs; B′

0 is the approximation to B0; and e1 is the er-
ror matrix of this first approximation. Next we model the
error term in a similar way as

e1 = e′
1 + e2, (7)

where e′
1 is the Tucker approximation of e1, and e2 is the error

term of the second approximation. This process is continued
until a satisfactory level of accuracy is obtained. Finally, the
log BRDF values can be approximated by

B0 ≈ B′
0 + e′

1 + e′
2 + · · · + e′

L−1, (8)

where L is the total number of iterations. Accuracy of the ap-
proximation closely depends on the number of iterations and

Figure 2: This figure shows error modelling using Tucker
factorization. In this figure, e1, e2, e3, . . . are errors,
B0

′, e′
1, e′

2, e′
3, . . . are tensors produced by Tucker factoriza-

tion.

needs to be determined empirically. This process is illustrated
in Figure 2 .

When a BRDF data set is approximated by using our pro-
posed approach, the corresponding CR will be:

CR = L(1 + Nθh
+ Nφh

+ Nθo + Nφo )

Nθh
Nφh

NθoNφo

. (9)

For a special case when Nθh
= Nφh

= Nθo = Nφo = N then
the corresponding CR becomes L(1 + 4N)/N4.

To render a colour image at a given outgoing direction,
we applied the Tucker approximation to the mean values of
measured BRDFs of the three colour channels. Following
a similar approach that was used by Ngan et al. [NDM05],
we estimated the diffuse and specular parameters for each
pair of measured BRDF of each colour channel and the ap-
proximated BRDF values using a robust linear regression
procedure [DO89].

5. Importance Sampling

The BRDF data can be viewed as sampled frequencies of
a multi-variate probability distribution [ÖKB10]. If an em-
pirical estimate of the corresponding probability distribution
can be obtained through an appropriate normalization then
standard statistical methods can be used to generate incident
vectors for a given outgoing direction.

In Figure 3, we illustrate the decomposed univariate
Tucker factors of three isotropic materials (fruitwood-241,
nickel and red-metallic-paint) and an anisotropic material
(brushed-aluminum). It is interesting to observe in this
figure that the functions of φh and φo are approximately
uniform for isotropic materials (fruitwood-241, nickel and
red-metallic-paint). This suggests that most of the total vari-
ation is explained by two components corresponding to

c© 2011 The Authors
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Figure 3: Plots of Tucker univariate factors for isotropic and anisotropic materials. First row: fruitwood-241 (isotropic),
second row: nickel (isotropic) and third row: red-metallic-paint (isotropic). Fourth row brushed-aluminum material (anisotropic).

univariate functions of θh and θ o. This empirical property
has been the case for all of the other isotropic materials
considered in this work. We could not establish a physical
correspondence for this situation. However, we used this em-
pirical property of the measured data of isotropic materials
to facilitate an importance sampling procedure. As may be
seen from the figure, a similar property is observed for the
anisotropic material also but the univariate factors are the
functions of θh and φh for this case.

Based on the empirical properties explained, the Tucker
factorization can be used to reduce the 4D sampling problem
into a 2D case. Thus, our importance sampling strategy is
based on treating the 4D BRDF data as sampled frequencies
of the underlying distribution and approximating it by 2D
functions.

We define the joint pdf ph(θh, φh, θ o, φo) by normalizing
the approximated BRDF ρ(θh, φh, θo, φo) as

ph(θh, φh, θo, φo) = ρ(θh, φh, θo, φo) sin θh

K
, (10)

where

K =
Nθh∑
i=1

Nφh∑
j=1

Nθo∑
k=1

Nφo∑
l=1

ρ
(
θ i
h, φ

j
h, θ

k
o , φl

o

)
sin θ i

h�θh�φh�θo�φo

(11)

is the normalizing coefficient, �θh = π/(2Nθh
), �φh =

2π/Nφh
, �θo = π/(2Nθo ) and �φo = 2π/Nφo .

Given an outgoing vector, the incident vector can be gen-
erated from the conditional distribution

ph(θh, φh | θo, φo) = ph(θh, φh, θo, φo)

K ′ , (12)

where

K ′ =
Nθh∑
i=1

Nφh∑
j=1

ph(θ i
h, φ

j
h, θo, φo)�θh�φh. (13)

Eq. (1) is defined as a function of �ωi and �ωo over the
hemisphere where coordinate system is defined in terms of θ i,
φi, θo and φo. To convert the halfway representation into this
coordinate system we multiply the conditional distribution in
Eq. (12) by the Jacobian of the corresponding transformation
[PH04] which yields

pi( �ωi | �ωo) = ph(θh, φh | θo, φo)

4( �ωh · �ωi)
. (14)

5.1. Importance sampling for isotropic materials

We applied Tucker factorization on the logarithms of
measured BRDF values, with parameters nθh

= 200, nθo =
32, nφh

= 1 and nφo = 1 on a sample with Nθh
× Nφh

×
Nθo × Nφo = 200 × 3 × 32 × 3 to obtain a compact rep-
resentation of BRDF data. Using this representation we
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proceeded to perform an importance sampling in a region
defined by θh and θ o only since the Tucker factors related
to φh and φo are approximately constant functions of these
parameters.

Based on these considerations, the conditional distribution
of θ h and φh given that θo and φo can be simplified is

ph(θh, φh | θo, φo) = ph(θh | θo). (15)

The empirical cdf evaluated at θh = θ
j
h can be expressed as

Ph

(
θ

j
h | θo

)
=

j∑
i=1

ph

(
θ i
h | θo

)
�θh. (16)

To simulate the vector �ωh = (θh, φh), first we generate a pair
of uniformly distributed random variables (ξ 1 and ξ 2) on the
interval [0, 1]. Next φh is generated as

φh = 2πξ1, (17)

and θh is generated using the inverse of the empirical cdf Ph

in Eq. (16) as

θh = P −1
h (ξ2 | θo). (18)

θ h and φh are substituted in Eq. (14) to evaluate the func-
tion value of the conditional pdf. Finally we compute the
incident vector using the well-known relationship between
the halfway vector and the incident and outgoing direction
vectors:

�ωi = 2( �ωo · �ωh) �ωh − �ωo. (19)

5.2. Importance sampling for anisotropic materials

Importance sampling is performed in a similar way for
anisotropic materials as in the isotropic case. For this pur-
pose we used a different anisotropic data set obtained by
Ngan et al. [NDM05] who have proposed a method for using
their data for direct rendering. We also employed their tech-
nique to create anisotropic data. Based on this anisotropic
data, we observed that the BRDF depends on θh and φh

only as shown in Figure 3 (bottom row). For this data
set we used a Tucker factorization with parameters nθh

=
96, nφh

= 48, nθo = 1 and nφo = 1 on a sample with a res-
olution of Nθh

× Nφh
× Nθo × Nφo = 256 × 48 × 16 × 16

for representing the BRDF. The incident vectors are gen-
erated using the joint conditional distribution of θh and φh

for given values of θo and φo.

Based on the empirical results for the anisotropic BRDFs
in Figure 3, marginal distributions of θo and φo can be as-
sumed to be approximately uniform. The conditional dis-
tribution of θh and φh given that θo and φo can be written
as

ph(θh, φh | θo, φo) = ph(θh, φh). (20)

The empirical cdf of φh can be approximated by

Ph

(
φ

j
h

)
=

j∑
i=1

Nθh∑
k=1

ph

(
θk
h , φi

h

)
�θh�φh. (21)

To simulate the vector �ωh = (θh, φh), first we generate φh as

φh = P −1
h (ξ1), (22)

where ξ 1 is a uniform random variable. Then, θh is generated
using the inverse of the empirical conditional cdf Ph(θh|φh),
which is approximated as

Ph

(
θ i
h | φj

h

)
=

i∑
m=1

ph

(
θm
h , φ

j
h

)
∑Nθh

k=1
ph

(
θk
h , φ

j
h

) . (23)

Finally, for a given φh and ξ 2, which is a uniform random
variable, θh is sampled as

θh = P −1
h (ξ2 | φh). (24)

6. Results

To investigate some empirical properties of the proposed
factored model, a data set based on 100 isotropic materials
acquired by Matusik et al. [MPBM03] (from the MERL MIT
database), and another data set based on four anisotropic
materials acquired by Ngan et al. [NDM05] have been
used.

As was reported recently, Matusik et al.’s [MPBM03]
data include some noisy measurements [LRR04, NDM05].
To minimize sampling errors, we ignored the measure-
ments with incident or outgoing angles greater than 85◦.
Furthermore, Matusik et al.’s data’s missing measurements
were estimated by their corresponding column and row
averages.

We used samples with a fixed resolution of Nθh
× Nφh

×
Nθo × Nφo = 128 × 16 × 16 × 64 and 128 × 32 × 32 × 128
for all isotropic and anisotropic BRDFs, respectively. Sam-
ples of resolutions Nθh

× Nθo = 200 × 32 and Nθh
× Nφh

=
256 × 48 for isotropic and anisotropic importance sampling
were also considered.

In this work we used N-way Toolbox [AB00] with the or-
thogonal projection option for all computations correspond-
ing to Tucker factorizations, and ROBUSTFIT [DO89] with
the bisquare option for estimating the diffuse and specular
colour parameters in MATLAB. The rendered images were
produced with Physically Based Rendering Toolkit (PBRT)
[PH04]. Analytical BRDF models that were chosen for em-
pirical comparisons were fitted to measured BRDF data us-
ing Ngan et al.’s fitting procedure [NDM05]. As was sug-
gested by various authors [NDM05, EBJ∗06], we consid-
ered multiple specular lobes for these analytical models. We
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Figure 4: Spheres were rendered using measured BRDF data and our factored BRDF model: (a) blue-fabric, (b) blue-metallic-
paint, (c) nickel, (d) yellow-matte-plastic, (e) grease-covered-steel, (f) red-velvet and (g) yellow-satin materials were presented.
All images were rendered at 1024 samples/pixel. Top row: reference images; middle row: our factored model; bottom row:
colour-coded differences between the reference images and the rendered images of factored model. For better comparison,
colour-coded differences were scaled. Below each image we also report the PSNR value.

Figure 5: The PSNR values of seven BRDF models for 100 isotropic materials. The PSNR values are sorted in the PSNRs of the
Cook–Torrance model (Magenta) for visualization purpose. Our model gives the highest PSNR values in 66 out of 100 materials
(higher is better).
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Figure 6: The Princeton scene was rendered for visual comparisons of well-known BRDF representations. (a) Reference image
was rendered using measured BRDF data; (b), (c), (d), (e), (f), (g) and (h) were rendered using the Ashikhmin–Shirley, the
Cook–Torrance, the Edwards et al., the Lawrence et al., the Ward, the Ward-Duer and our factored BRDF models, respectively.
All images were rendered at 262 144 samples/pixel using a path tracing algorithm. Insets show a colour-coded difference
between the reference image and the rendered image. For better comparison, colour-coded differences were scaled. Below each
image we also report the PSNR value.

Figure 7: (a) Image MSE for measured nickel BRDF as a function of the number of samples in constant environment. (b) Image
MSE for measured nickel BRDF as a function of the number of samples in Grace Cathedral environment. At 256 paths/pixel we
see the values for which the factor of improvement is listed in Tables 1 and 2.

compared our rendering results with those of Lawrence et
al. [LRR04], using the parameter values given in their paper.
The peak signal-to-noise ratio (PSNR) [Ric02] values were
obtained to compare the visual quality of the underlying
models.

Based on our model, renderings under direct illumination
are shown in Figure 4 for various isotropic and anisotropic
materials. It can be seen from the colour-coded difference
images that our compact factored model provides a satis-
factory representation both for isotropic and for anisotropic
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materials. Using 100 isotropic materials, we carried out an ex-
tensive comparison of our model with six well-known BRDF
models, namely Ashikhmin–Shirley [AS00], Cook–Torrance
[CT81], Edwards et al. [EBJ∗06], Lawrence et al. [LRR04],
Ward [War92] and Ward-Duer [Due05] (Figure 5). It is in-
teresting to observe that the proposed model has resulted in
the highest PSNR values in 66 cases and performed well
for the remaining 34 materials. We also obtained render-
ings of the Princeton scene [LRR04, EBJ∗06] and pre-
sented these in Figure 6. The PSNR values calculated for
the materials given in the figure shows that our factored
BRDF model gives the best representation for this special
case.

We notice that the BRDF properties at grazing angles are
represented well with our method. However, for specular
regions appear to be more specular than expected for highly
specular materials such as brass, chrome, chrome-steel and
red-metallic-paint (see supplementary document).

To evaluate the efficiency of our importance sampling
procedure quantitatively, we rendered spheres (visibility
is not considered) lit by both constant and complex en-
vironment maps. The importance sampling methods se-
lected for comparison include analytical samplings of
Ashikhmin–Shirley [AS00], Edwards et al. [EBJ∗06] BRDF
models and Lawrence et al.’s [LRR04] factored BRDF
model.

To investigate the effects of importance sampling pro-
cedures on the image quality, we calculated the MSEs
for various sample sizes (number of samples per pixel).
The mean squared errors (MSEs) obtained for blue-
metallic-paint, nickel and yellow-matte-plastic are shown in
Figure 7. Reference images used in these comparisons
were rendered with 262 144 samples per pixel. We also
compared our method with the others in terms of the ratios of
corresponding MSEs. The results for constant and complex
environments are given in Tables 1 and 2, respectively. The
ratios of the MSEs given in these tables can be used to
estimate about how much longer the alternative approaches
would need to run to produce the same quality results
in rendered images as our method. Ratios greater than 1

Table 1: The efficiency of BRDF sampling in a constant environ-
ment. This table lists the factor of improvement in MSEs resulting
from sampling the BRDF according to our factored representation
in the constant environment.

Blue-metallic- Yellow-matte-
Material paint Nickel plastic

Ashikhmin–Shirley 0.5697 0.9432 0.7328
Edwards et al. 0.5330 1.8501 0.8134
Lawrence et al. 0.4099 6.4845 1.3159

Table 2: The efficiency of BRDF sampling in Grace Cathedral envi-
ronment. This table lists the factor of improvement in MSEs resulting
from sampling the BRDF according to our factored representation
in the Grace Cathedral environment.

Blue-metallic- Yellow-matte-
Material paint Nickel plastic

Ashikhmin–Shirley 1.029 0.9903 0.9361
Edwards et al. 0.8851 0.9672 0.9111
Lawrence et al. 1.0158 1.2752 1.0759

indicate that the proposed importance sampling procedure
performs better than its competitors. As is seen from Figure 7
and Tables 1 and 2, our importance sampling method gives
comparable results. We also rendered the Princeton scene
using a path tracer with global illumination, which is shown
in Figure 8. In this case, multiple importance sampling (MIS)
methods [VG95] do not work, therefore the BRDF sampling
is the only reasonable strategy. In Figure 8, it should be noted
that the differences in the glossy highlights are caused by
different approximations produced by the respective models
(e.g. our representation cause colour-shift); the importance
sampling itself is unbiased. Clearly, our importance sampling
method is comparable to the importance sampling technique
presented by Ashikhmin–Shirley [AS00] and Lawrence
et al. [LRR04]. The sampling times based on 256 samples
per pixel for the Princeton scene which was rendered
under direct illumination, were found to be 1067.392,
1109.015, 1161.327 and 1261.461 seconds for Lawrence
et al. [LRR04], Ashikhmin–Shirley [AS00], our Tucker im-
portance sampling procedure and Edwards et al. [EBJ∗06],
respectively. These results show that sampling times
are approximately the same for all importance sampling
algorithms.

We also compared the storage need of our model with
another factored BRDF model proposed by Lawrence et al.
[LRR04]. As it can be seen from Table 3, the storage needs of
our factored BRDF model are roughly two–three times less
than that of Lawrence et al.’s representation, while provid-
ing better representation. The parameter L defined in Eq. (9)
plays an important role both for storage complexity and rep-
resentation ability. The values for L used in this comparison
are 15, 15 and 13 for blue-metallic-paint, nickel and yellow-
matte-plastic, respectively. Our empirical results have shown
that a typical number of iterations (L) is about 13.

A similar comparison was performed on rendering times
of the models based on Figure 4. The corresponding results
are presented in Table 4. Rendering times were acquired on
an Intel Core i7 2.66 GHz computer with a 12 GB memory.
As seen from Table 4 that the rendering times of our factored
BRDF model is slightly higher than the rendering times of
the other models.
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Figure 8: For visual comparison of sampling efficiency, the Princeton scene was rendered using a path tracer for global
illumination and paths up to five bounces were included: (a), (b), (c) and (d) were rendered using the Ashikhmin–Shirley BRDF,
the Edwards et al. BRDF, the Lawrence et al.’s factored BRDF and our factored BRDF at 256 samples/pixel, respectively. The
bottom row shows closeups of highlighted regions for all models.

Table 3: Required storage spaces by the three BRDF representa-
tions for various materials. Rendering data are prepared in binary
double precision for all BRDF representations.

Blue-metallic- Yellow-matte-
BRDF Model paint Nickel plastic

Measured 33.4 MB 33.4 MB 33.4 MB
Lawrence et al. 139.0 KB 96.5 KB 331.9 KB
Our factored model 76.7 KB 76.7 KB 73.2 KB

Table 4: Rendering times (in seconds) of various BRDF represen-
tations.

Blue-metallic- Yellow-matte-
BRDF Model paint Nickel plastic

Measured 1802.83 1894.33 1830.87
Cook–Torrance 1647.43 1759.23 1770.70
Lawrence et al. 1854.53 1795.97 1831.27
Ward 1465.93 1563.70 1591.10
Our factored model 2048.73 2122.40 2015.23

7. Conclusions and Future Work

In this paper, we have introduced a factored BRDF model
which provided good approximation and an efficient impor-
tance sampling for BRDF. Our factored BRDF representation
can be considered as a compression technique for measured
BRDF data. We showed that our factored method can pro-
vide good approximations both for isotropic and anisotropic

materials. Furthermore, we showed that our importance sam-
pling procedure performed as well as other well-known im-
portance sampling techniques.

Our future work will be continued to generalize the pro-
posed factorization technique to higher dimensional data and
to implement our factored BRDF representation in real-time
global illumination algorithms.

Appendix

Algorithm 1 performs logarithmic transformation on the
measured BRDF data.

Algorithm 2 calculates the coefficients of Tucker factors
for a given number of iterations (L) by using the factorization
algorithm (tuckerFit) [AB00]. This algorithm also employs
robustFit [DO89] to obtain the robust regression estimates
of diffuse and specular parameters. While tuckerFit function
uses orthogonal projection option as a default parameter, ro-
bustFit function uses bisquare option as a default parameter.

Algorithm 3 reconstructs a tensor using the coefficients of
Tucker factors. Finally, Algorithm 4 evaluates the estimated
BRDF values.

Algorithm 1: prepareFittingData(measuredBRDF)

1: /∗Br , Bg and Bb are BRDF tensors for each color channel∗/
2: B = (Br + Bg + Bb)/3
3: B0 = log(B)
4: return B0

c© 2011 The Authors
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



A. Bilgili et al. / A General BRDF Representation Based on Tensor Decomposition 2437

Algorithm 2: fittingProcedure(B0, L)

1: let e = B0

2: let logBRDF = 0
3: for i = 1 to L
4: [gi , f1{i}, f2{i}, f3{i}, f4{i}] = tuckerFit(e)
5: e = e − tuckerEvaluateTensor(gi , f1{i}, f2{i}, f3{i}, f4{i})
6: end for
7: for i = 1 to L
8: logBRDF = logBRDF+

tuckerEvaluateT ensor(gi , f1{i}, f2{i}, f3{i}, f4{i})
9: end for
10: [kdr , ksr ] = robustFit(exp(logBRDF), Br )
11: [kdg, ksg] = robustFit(exp(logBRDF), Bg)
12: [kdb, ksb] = robustFit(exp(logBRDF), Bb)
13: return g{1...L}, f 1{1...L}, f 2{1...L}, f 3{1...L}, f 4{1...L},kdr , kdg, kdb, ksr ,

ksg, ksb, ksr , ksg, ksb

Algorithm 3: tuckerEvaluateTensor(g, f 1, f 2, f 3, f 4)

1: let evaluatedTensor = 0
2: for i = 1 to Nθh

3: for j = 1 to Nφh

4: for k = 1 to Nθo

5: for l = 1 to Nφo

6: evaluatedTensorijkl = g ∗ f1(i) ∗ f2(j ) ∗ f3(k) ∗ f4(l)
7: end for
8: end for
9: end for
10: end for
11: return evaluatedTensor

Algorithm 4: renderTuckerBrdf(g{1...L}, f 1{1...L}, f 2{1...L}, f 3{1...L},
f 4{1...L}, θhind , φhind , θoind , φoind , kdr , kdg, kdb, ksr , ksg, ksb)

1: let logBRDF = 0
2: for i = 1 to L
3: logBRDF = logBRDF + g1{i} ∗ f1{i}(θhind ) ∗ f2{i}(φhind )∗

f3{i}(θoind ) ∗ f4{i}(φoind )
4: end for
5: return kdr + ksr ∗ exp(logBRDF), kdg + ksg ∗ exp(logBRDF),

kdb + ksb ∗ exp(logBRDF)
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