
EUROGRAPHICS 2013/ N.N. and N.N. Poster

A Heterogeneous Subsurface Scattering Representation
Based on Compact and Efficient Matrix Factorization

Murat Kurt†1 and Aydın Öztürk‡2

1International Computer Institute, Ege University
2Department of Computer Engineering, Izmir University

Abstract
This poster presents a novel compact and efficient factored subsurface scattering representation for heterogeneous
translucent materials. Our subsurface scattering representation consists of two parts, namely, a matrix factoriza-
tion and a linear regression method. We first apply a matrix factorization method on the intensity profiles of the
heterogeneous subsurface scattering responses. Next, we fit a polynomial model for characterizing the differences
between the different color channels with a linear regression procedure. We validate our heterogeneous subsur-
face scattering representation on various real-world heterogeneous translucent materials, geometries and lighting
conditions. We show that our method provides good compression at acceptable visual accuracy.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Translucent materials, such as wax, and marble are common
in real-world. They also have unique heterogeneous struc-
tures. To render such composite materials, acquiring hetero-
geneous data is a convenient way that yields realistic re-
sults [PvBM∗06]. However, due to the enormous storage
requirements (gigabytes), efficient compression algorithms
are necessary. In this poster, we present our compact and ef-
ficient factorization based subsurface scattering representa-
tion, suitable for representing and rendering the spatial com-
ponent of heterogeneous subsurface scattering materials.

2. Subsurface Scattering Representation

Pre-Processing: We represent the measured BSSRDF as
a 2D matrix Rd(xi,xo) where xi and xo are incoming and
outgoing surface locations. We can get the most compact
form of the subsurface scattering matrix Rd(xi,xo) with
d = xo − xi reparametrization. The reparameterized subsur-
face scattering matrix R′d(xi,d) can be factorized instead of
Rd(xi,xo). To increase the effectiveness of a classical factor-
ization, we shift each row independently such that the maxi-
mum element in the each row will be the first element in that
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row. After that, we divide each row with its maximum value.
After these operations, we get R′′d (xi,d) from the reparame-
terized subsurface scattering matrix R′d(xi,d). In our experi-
ments, we see that R′′d (xi,d) is more suitable for an efficient
factorization than R′d(xi,d). Another advantage of the shift-
ing of the rows is that this also allows to efficiently compen-
sate for any shift in the peak that can occur due to measure-
ment or calibration issues.

Factorization: As we describe in the previous subsection,
we prepare the reparameterized subsurface scattering matrix
R′′d (xi,d) which includes intensity response values for each
surface point. For an efficient and compact factorization, we
apply the error modeling approach using the Tucker factor-
ization [Tuc66] to R′′d (xi,d) matrix. Please refer to [BÖK11]
for an in depth discussion on the error modeling approach.
Consequently, our subsurface scattering model can be for-
malized as:

R′′d (xi,d)≈
T

∑
j=1

g j f j(xi)h j(d), (1)

where T is the total number of terms, g j is the scalar core
tensor, f j(xi) and h j(d) are the univariate tensor functions,
xi incoming surface location and d = xo − xi. Since we ap-
ply Tucker factorization to 2D intensity matrix, our Tucker-
based factorization algorithm is the same as a classical Sin-
gular Value Decomposition (SVD) method.

Linear Regression: In the linear regression procedure, we
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Figure 1: Representing heterogeneous subsurface scattering with
our factored model. (Upper) marble (close up) material (T =

15,P = 4), (bottom) chessboard (4×4) material (T = 15,P = 7).

estimate the linear coefficients for each row of measured
subsurface scattering matrix. Then, the corresponding mod-
els for each color channel can be written as

Rdr(xi,xo)≈
P

∑
p=0

βrpxi R
′
d(xi,d)

p, (2)

Rdg(xi,xo)≈
P

∑
p=0

βgpxi R
′
d(xi,d)

p, (3)

Rdb(xi,xo)≈
P

∑
p=0

βbpxi R
′
d(xi,d)

p, (4)

where P is the degree of the polynomial, and βrpxi , βgpxi , and
βbpxi are the parameters of the model. Linear least square
optimization techniques were used to fit the model to sub-
surface scattering data and the subsurface scattering values
for the underlying color channel were estimated from the fit-
ted model. Our linear regression based method exploits co-
herency between the color channels, and provides a more
compact representation without significant loss of accuracy.
This approach can potentially also be applied other factor-
ization based compression methods.

3. Results

To visualize our results, we implemented a rendering scheme
similar to Peers et al. [PvBM∗06] in the Mitsuba render-
ing system [Jak13]. We verified our Tucker factorization
based subsurface scattering model on several real-world sub-
surface scattering materials, ranging from fairly homoge-
neous to highly translucent heterogeneous materials. As can
be seen in Figure 1, our Tucker-based subsurface scattering
model can be used with any geometries, while providing het-
erogeneous subsurface scattering effects visually plausibly.
We also compared our model with Peers et al.’s [PvBM∗06]
subsurface scattering model. As can be seen in Figure 2, our
Tucker factorization based subsurface scattering model rep-
resents heterogeneous translucent materials more accurately
at the same compression rates.

(a) (b) (c)
(Data size: 2.75 GB) (Data size: 10.8 MB) (Data size: 10.2 MB)

(d) (e) (f)
(RMSE = 0.0384) (RMSE = 0.0242)
(PSNR = 29.65) (PSNR = 31.16)

Figure 2: For visual comparison on a statue under spot lighting,
(a) a heterogeneous chessboard (8× 8) was rendered with a full
Monte Carlo path tracing algorithm (reference image); (b) and (c)
were rendered using Peers et al. [PvBM∗06] and our factored sub-
surface scattering model, respectively. (d), (e), and (f) are zoom-in
images from (a), (b), and (c), respectively. For better comparison,
false-color differences were scaled by a factor of 5.

4. Conclusions and Future Work

In this poster we have presented a compact and efficient fac-
torization based representation for the spatial component of
heterogeneous subsurface scattering. Our subsurface scatter-
ing representation is composed of Tucker factorization and a
linear regression procedure. We have demonstrated that our
compact factored representation can be applied to any ge-
ometries and it can be easily integrated into a standard global
illumination rendering system, resulting in convincing im-
ages. Furthermore, we compared our subsurface scattering
model with Peers et al.’s [PvBM∗06] factored model, and
we showed that our compact subsurface scattering model can
represent heterogeneous subsurface scattering effects accu-
rately. In the future, we are interested in exploring rendering
algorithms to employ our subsurface scattering representa-
tion directly in real-time applications.
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