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Abstract—This paper presents a plugin that adds an efficient
representation of heterogeneous translucent materials to the
Blender 3D modeling tool. Algorithm of the plugin is based
on Singular Value Decomposition (SVD) method and Mitsuba
renderer is the default rendering software used by the proposed
plugin. We validate the efficiency of the proposed plugin by using
a set of measured heterogeneous subsurface scattering data sets.
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I. INTRODUCTION

Efficient representation of heterogeneous translucent mate-
rials in computer graphics is a common problem. A number
of efficient methods have been proposed to represent the Bidi-
rectional Scattering Surface Reflectance Distribution Function
(BSSRDF) for homogeneous translucent materials [1], [2].
However, none of these methods could be generalized to
provide proper outputs for heterogeneous translucent materials.
The characteristics of having structural deficiencies, impurities
and composite structures inside the object volume of heteroge-
neous translucent materials require approaches with a different
view point [3], [4], [5], [6], [7]. On the other hand, high storage
needs and computational costs of these algorithms remain to
be a major problem to be resolved.

In this study, we use the Singular Value Decomposition
(SVD) method for the BSSRDF representation of hetero-
geneous translucent materials. The proposed approach was
implemented in C++ and included in the source codes of
Mitsuba renderer project [8]. The integration plugin which
has already been available for use by [9], was modified and
imported into the three dimensional (3D) Blender modeling
tool [10].

Our plugin helps to render heterogeneous translucent ma-
terials accurately and efficiently. As it can be seen in Figure 7
and Figure 8, the rendering output of the plugin gives hetero-
geneous subsurface scattering effects visually plausibly.

II. RELATED WORK

The problem of representing BSSRDF for heterogeneous
translucent materials has an extensive literature. Major efforts
have been devoted to the development of some approximation
models. The underlying approaches broadly can be classified
into two groups. The first group includes the techniques that

extend the Jensen’s Dipole Diffusion Approximation Model [1]
and the second group consists of the techniques that are based
on development of new material models.

Jensen’s Dipole Diffusion Approximation model reduces
computation time of eight dimensional BSSRDF [11] to ac-
ceptable rates. This approach is effective on homogeneous
translucent materials and extended by many researchers [12],
[13], [14], [15], [16]. Nevertheless, the main observation of
light being isotropic and modeling homogeneous translucent
materials make this model inappropriate for heterogeneous
BSSRDF representation.

Jakob et al. [12] extended the Dipole Diffusion Approx-
imation model by using anisotropic approach. This model
improved the Jensen et al.’s model, however, the output of
this model does not give visually plausible heterogeneous
subsurface scattering effects. Mertens et al. [13] modeled
human skin by using an interactive method to achieve local
subsurface scattering. Donner and Jensen’s [14] study is based
on using multiple dipoles and they represented their study
on paper and human skin. Another study was presented by
Jimenez et al. [15] in which human skin was represented.
Considering the psychological states of human face, Jimenez
et al. [16] also modeled facial appearance for different regions
on the face.

The second group of techniques includes Goesele et al.’s [5]
compact model depending on underlying geometry, Tong et
al.’s [6] model of quasi-homogeneous materials and Song et
al.’s [7] SubEdit representation which allows interactive editing
and rendering of translucent materials. Although these tech-
niques classified in this group have made some improvements
on heterogeneous BSSRDF representation, their design issues
still prevent them to provide efficient solution for the problem.

The Peers et al.s’ work [17] was an important step for the
solution of the problem. In their study, they employed the Non-
Negative Matrix Factorization (NMF) algorithm. Replacing the
Tucker-based factorization on tensor decomposition with the
NMF algorithm, the same algorithm was also used by Kurt
et al. [3]. Kurt [18] also used Singular Value Decomposition
method on tensor decomposition and reported that the under-
lying algorithm has improved the computational efficiency for
the data with two dimensional (2D) matrices [18]. This was
the main motivation in our work and following his work, his
corresponding algorithm was imported through our plugin and
an efficient heterogeneous subsurface scattering representation
was put into service for 3D modeling tools.
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Fig. 1. The diffuse BSSRDF matrix (a) is transformed by first aligning the
diagonal by a change of variables to R′

d(xi, d) (b) [3].

III. SUBSURFACE SCATTERING WITH SVD METHOD

A. Preparation of the Test Data

Heterogeneous translucent materials are represented by
BSSRDF [11], [1]:

Lo(xo, ~ωo) =

∫
A

∫
Ω+

Li(xi, ~ωi)S(xi, ~ωi;xo, ~ωo)(~ωi·~n)d~ωidxi.

(1)
This function relates to the outgoing radiance at one point
to the incident flux at another. Eq. (1) can be separated into
a local and a global component where the local component
represents the reflected light and the global component repre-
sents the scattering light in the material volume [3]. The global
component is represented by the diffuse BSSRDF [17], [3]

Sd(xi, ~ωi;xo, ~ωo) =
1

π
Fi(xi, ~ωi)Rd(xi, xo)Fo(xo, ~ωo). (2)

Eq. (2) represents the diffuse BSSRDF Sd with a four di-
mensional (4D) spatial subsurface scattering component Rd

and the directionally dependent components Fi and Fo. The
directionally dependent components are ignored and Rd is
focused in the modeling process [17], [3], [5], [7].

For the factorization operation, 4D Rd value is transformed
into 2D matrix. As it can be seen in Figure 1, Kurt et al. [3]
reorganized this matrix by changing the variable d = xo −
xi. With this reorganization, R′

d matrix is found which is a
more compact matrix for representing measured heterogeneous
translucent materials.

B. Factorization

The subsurface scattering data is factorized by Singular
Value Decomposition (SVD) as explained below. This method
is a subset of tensor decomposition methods used in the
representation of subsurface scattering effects. The study of
Peers et al. [17] based on NMF algorithm and the study of Kurt
et al. [3] based on Tucker-based factorization are examples of
other tensor decomposition methods.

The subsurface scattering data has multi-dimensional fea-
tures. It can be represented through a tensor model. For
example, a 2D matrix can be considered as a second degree
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Fig. 2. The root-mean-square error (RMSE) values of SVD-based subsurface
scattering model with different values of S parameter [18].

tensor. Thus, the subsurface scattering data in the form of
a matrix provides a convenient form of data set for tensor
decomposition operation.

In SVD operation an M × N matrix is defined as the
product of an U matrix with dimensions M ×K and a matrix
V with dimensions K×N and a core tensor with dimensions
K ×K. This is a similar decomposition operation in Kurt et
al.’s study [3], however, if the value of K is chosen to be 1 that
is a scalar then the dimensions of U and V matrices become
M × 1 and 1×N , respectively, and the core tensor becomes
a scalar [18].

In this operation, R′
d is taken into consideration as it is the

most compact data. Another consideration in the factorization
operation is making the data stay in the positive values which
leads to physically correct results. This is achieved by another
transformation that is [18]:

R′′′
d (xi, d) = ln

(R′
d(xi, d)

A
+B

)
. (3)

By choosing the most appropriate values for A and B to
minimize the error values, R′′′

d matrix is factorized using SVD
and error terms for each color channel is modeled using Bilgili
et al.’s approach [19]. This procedure is repeated S times to
improve the accuracy of the approximation. Accordingly, R′′′

d
becomes [18]:

R′′′
d (xi, d) ≈

S∑
j=1

fj(xi)hj(d). (4)

More details about SVD-based subsurface scattering rep-
resentation can be found in Kurt’s [18] work.

C. Analysis

SVD-based subsurface scattering representation depends
only on a single parameter, S that is the number of terms
in the factorization operation.
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Fig. 3. The compression rates (CR) of SVD-based subsurface scattering
model with different values of S parameter [18].

The work of Kurt [18] shows that SVD-based subsurface
scattering representation gives convincing results for repre-
senting heterogeneous translucent materials. In this work, it
is also emphasized that the approximation results are visually
acceptable for some test materials even for small number of
iteration (S ≤ 5). The effect of the number of iterations
on the model errors for different materials is illustrated in
Figure 2. This efficiency was the main motivation in this
study, which leaded us to use SVD-based subsurface scattering
representation in our plugin instead of other factorization
methods such as Tucker-based factorization model [3].

Furthermore, the S value should be chosen carefully since
the factorization is applied for each channel, separately and
the compression rate can be a problem for obtaining close
approximations. The effect of the number of iterations on
the compression ratio for different materials is illustrated in
Figure 3.

IV. THE INTEGRATION PLUGIN

Constructing images through modeling and representing
the BSSRDF for heterogeneous translucent materials is a
complicated procedure. Developing a plugin to support the
heterogeneous subsurface scattering effects of the underlying
materials will provide a useful tool for many applications. In
this work, we aim to develop a plugin for rendering purposes.
Such a plugin must be an interface between the renderer
and the software modeling tool. Because, the renderer which
has the capability to represent the heterogeneous translucent
materials is not the only task to be carried out. Details of
lighting information, shading, texture mapping and others in
the scene are defined by the 3D modeling tool and these details
are also important properties that should be considered in the
representation. Therefore, the plugin should send the details
available on the scene to the renderer, and then the SVD-based
subsurface scattering representation can be a solution for the
common problem.

Our procedure for developing the plugin has two steps:
the first step consists of the implementation of SVD-based

Fig. 4. The graphical user interface of our integration plugin in the Blender
3D Modeling Tool [10].

subsurface scattering representation in the renderer, and the
second step is to create a script that is able to send the
details in the scene to the SVD-based subsurface scattering
representation for a visually plausible rendering.

The 3D modeling tools are powerful software to model the
details of the scene. Light sources, materials and their details
can easily be defined using these tools. Our main choice was
the Blender project [10] which is an open source developing
platform and uses Python [20] as its plugin scripting language.
These features were effective in our choice since Python has
the ability to call C++ functions without the need of any
software. It is also effective in the sense that an open source
application would be useful for the documentation and faster
development.

We chose Mitsuba renderer [8] as the default renderer
because it is highly optimized and it has good performance,
scalability, easy usability and robustness are the other features
of this renderer includes. As the project is in C++ and Blender
supports Python, the implementation of our plugin could
become easier. The version of the Blender used in the this
work is 2.69 which is compatible with Mitsuba version 0.5.
We modified the source codes of these versions to finalize our
study successfully.

The integrator class in Python script is defined as ”class
mitsuba sss svd”. This class has control parameters for using
different material types which are the possible parameters
for the heterogeneous translucent materials. We tested our
plugin on chessboard (4 × 4) and chessboard (8 × 8) hetero-
geneous translucent materials, which were measured by Peers
et al. [17].

The integration plugin renders the material according to the
material type choice and sends the data to the Mitsuba renderer
.exe file, which consists of the necessary operations. These
parameters are updated a function called ”params.update”
which is defined in the Python script. The data is kept on the
object of the material chosen, by using the default constructor
self of Python language.

Graphical User Interface (GUI) of the integration plugin
is shown in Figure 4. The representation of heterogeneous
translucent materials is classified under the section of Subsur-
face Scattering of the already available integration plugin [9]
and the details of the material type is chosen using the GUI of



Fig. 5. A general overview of the Blender 3D Modeling Tool [10] and our integration plugin.

the plugin. As the Blender project [10] supports for modeling
different types of materials and other details in the scene, the
effect of the chosen operation is completed after the rendering
operation. A general overview of the Blender 3D modeling
tool and our integration plugin can be seen in Figure 5.

V. EXPERIMENTAL RESULTS

The proposed plugin was developed and tested by using
various objects of some sample materials on which SVD-based
heterogeneous subsurface representation were applied. Empir-
ical results has shown that the rendering operation based on
the underlying plugin simulates the heterogeneous subsurface
scattering effects successfully. Furthermore, two critical issues
that are the processing time the plugin requires to complete the
rendering process and the storage requirements were checked
to see if there is any preclusion.

The materials chosen for the test were applied on a dragon
and a kitten objects. We checked whether the plugin could
perform subsurface scattering effects on the objects as it
does directly with Mitsuba renderer. It’s important that SVD-
based subsurface scattering representation is a texture-space
based model. The texture coordinates on the objects were
carefully determined by a 3D modeling tool and these texture
coordinates were sent to Mitsuba renderer. Thus the details of
the scene was exported to the renderer successfully.

Figure 6 shows the preview of subsurface scattering effects
on a sphere solid object. A similar effect can be rendered
on an object chosen in the scene by the artist. As it is
seen in Figure 7(a), our plugin helps to render heterogeneous
translucent materials correctly and it took 20 minutes to take
this rendering output on a computer with i7-3630QM processor
with 8GB RAM and NVIDIA GTX660M/2GB GDDR5. The

storage of the output was 36.1MB. Figure 7(b) illustrates
another tested material, chessboard (8×8) on a dragon object.
The output needed 38.42MB on the same computer and the
rendering process took only 20.9 minutes.

As it is seen in Figure 8, the last rendering test was done
on a kitten object and on the same PC. Chessboard (4×4) and
chessboard (8× 8) materials were tested on the kitten object.
It took 16.157 and 17.36 minutes to render chessboard (4×4)
and chessboard (8 × 8) materials, respectively. The storage
space needed 32.66MB and 34.72MB for rendering chessboard
(4× 4) and chessboard (8× 8) materials, respectively.

VI. CONCLUSION

In this paper, we presented an integration plugin for
rendering heterogeneous translucent materials and empirically
demonstrated that it enables to render visually plausible scenes.
Our plugin relies on SVD-based subsurface scattering model
which was proposed by Kurt [18]. In this paper, we also
showed that the plugin works correctly by communicating with
Mitsuba renderer and 3D modeling tool.

The plugin may be developed by adding different subsur-
face scattering models for rendering heterogeneous translucent
materials.

VII. FUTURE WORKS

This study enables the use of SVD-based subsurface scat-
tering model for rendering heterogeneous translucent materials
on a 3D modeling tool. As the proposed plugin is compatible
with Blender project [10] and Mitsuba renderer [8], the func-
tionality is strictly related with the correct versions of these
tools.



Fig. 6. A preview scene of our integration plugin in the Blender 3D Modeling
Tool. Chessboard (4× 4) material was represented in this rendering.

(a) (b)

Fig. 7. A dragon under spot lighting was rendered using our integration
plugin. The value of S parameter in SVD-based subsurface scattering model
was selected as 10. (a) chessboard (4× 4), (b) chessboard (8× 8) materials.

As a future development, the availability of other factor-
ization based models such as Tucker-based factorization model
can be supported in the integration plugin. There is also a lack
of the availability of different subsurface scattering data which
will be supported in the future versions.

It is also important that there are lots of different tools for
3D modeling which brings the need for extending this plugin
for different platforms. The compatibility of plugin for other
platforms is also considered as a future study.
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[19] A. Bilgili, A. Öztürk, and M. Kurt, “A general brdf representation based
on tensor decomposition,” Computer Graphics Forum, vol. 30, no. 8,
pp. 2427–2439, December 2011.

[20] G. V. Rossum, “Python,” 1989, https://www.python.org/.


	Introduction
	Related Work
	Subsurface Scattering with SVD Method
	Preparation of the Test Data
	Factorization
	Analysis

	The Integration Plugin
	Experimental Results
	Conclusion
	Future Works
	References

