
AN EFFICIENT PLUGIN FOR REPRESENTING
HETEROGENEOUS TRANSLUCENT MATERIALS

Sermet Önel1 – Murat Kurt2 – Aydın Öztürk3

1 Department of Computer Engineering, Yaşar University

2 International Computer Institute, Ege University

3 Department of Computer Engineering, İzmir University

OUTLINE

• Introduction to subsurface scattering and translucent material representation
 Efficient models on homogeneous translucent materials

 Efficient models on heterogeneous translucent materials

• A better representation for heterogeneous translucent materials
 Singular Value Decomposition (SVD) approach

• The integration plugin
 Details about the software

 Details about importing the scene parameters

• Results and discussion on the future work

INTRODUCTION TO SUBSURFACE
SCATTERING

• Subsurface scattering: a more realistic rendering mechanism

• Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF)
[Nicodemus et al., 1977]

• BSSRDF is an 8D function : expensive to compute

• The function relates to the outgoing radiance at one point to the incident
flux at another

𝑑𝐿𝑜 𝑥𝑜, 𝜔𝑜 = 𝑆 𝑥𝑖 , 𝜔𝑖; 𝑥𝑜 , 𝜔𝑜 𝑑𝜑 𝑥𝑖 , 𝜔𝑖

INTRODUCTION TO SUBSURFACE
SCATTERING

The functions that define the interaction between light and materials [Kurt, 2014]

SUBSURFACE SCATTERING MODELS

• Homogeneous Translucent Materials:
 Jensen (2001) proposed a dipole diffusion approximation model for homogeneous

translucent material representation

 Mertens (2005) modelled human skin using an interactive model to achieve local
subsurface scattering

 Donner and Jensen (2005) proposed multiple dipoles for multi-layered translucent
materials

 Jakob et al. (2010) extended dipole model using an anisotropic approach

 Jimenez et al. (2010a; 2010b) modelled human skin and added representation of
psychological and emotional states

SUBSURFACE SCATTERING MODELS

• Heterogeneous Translucent Materials:

 Goesele et al. (2004) offered a compact model depending on underlying geometry

 Tong et al. (2005) modelled quasi-homogeneous materials

 Peers et al.’s (2006) employed Non-Negative Matrix Factorization (NMF) algorithm to
represent heterogeneous translucent materials

 Song et al.’s (2009) SubEdit representation allowed interactive editing and rendering

 Kurt et al. (2013) and Kurt (2014) replaced NMF with Tucker Factorization and Singular
Value Decomposition (SVD), respectively.

OUTLINE

• Introduction to subsurface scattering and translucent material representation
 Efficient models on homogeneous translucent materials

 Efficient models on heterogeneous translucent materials

• A better representation for heterogeneous translucent materials
 Singular Value Decomposition (SVD) approach

• The integration plugin
 Details about the software

 Details about importing the scene parameters

• Results and discussion on the future work

SVD APPROACH

• Pre-processing:

 Similar to Peers et al.’s (2006) NMF factorization and Kurt et al.’s (2013) Tucker
factorization methods

 Therefore, subsurface scattering data can be represented through a tensor model.
2D matrix is considered as a second degree tensor in this approach

 In SVD approach, an MxN matrix is defined as the product of a U matrix with
dimensions MxK and a matrix V with dimensions KxN and a core tensor with
dimensions KxK.

 However, in this approach K is chosen to be 1, so the matrices U and V become Mx1
and 1xN, respectively, the tensor becomes a scalar

SVD APPROACH

• Pre-processing:

[Kurt, 2014]

SVD APPROACH

• Pre-processing:

 Another consideration in SVD approach is making the data stay at positive values
which leads to physically correct values

 Such an approximation is done using another transformation on 𝑅𝑑
′

 Then we get 𝑅𝑑
′′′ 𝑥𝑖 , 𝑑 = ln(

𝑅𝑑
′ (𝑥𝑖,𝑑)

𝐴
+ 𝐵)

 𝑅𝑑
′′′ is factorized using SVD approach and error terms are modelled using Bilgili et al.’s

approach (2011)

SVD APPROACH

• Resulting Subsurface Scattering Model:

[Kurt, 2014]

SVD APPROACH

• Subsurface Scattering Representation:

 After interpolation:

𝑅𝑑𝑟 𝑥𝑖 , 𝑥𝑜 ≈ 𝐴 ∗ exp 𝑅𝑑𝑟
′′′ 𝑥𝑖 , 𝑑 − 𝐴 ∗ 𝐵

𝑅𝑑𝑔 𝑥𝑖 , 𝑥𝑜 ≈ 𝐴 ∗ exp 𝑅𝑑𝑔
′′′ 𝑥𝑖 , 𝑑 − 𝐴 ∗ 𝐵

𝑅𝑑𝑏 𝑥𝑖 , 𝑥𝑜 ≈ 𝐴 ∗ exp 𝑅𝑑𝑏
′′′ 𝑥𝑖 , 𝑑 − 𝐴 ∗ 𝐵

 As the study shows, SVD approach gives better performance on 2D matrices where
Tucker factorization is better on higher order tensors. Therefore, SVD approach is
implemented in this thesis study.

[Kurt, 2014]

SVD APPROACH

• Analysis:

[Kurt, 2014]

OUTLINE

• Introduction to subsurface scattering and translucent material representation
 Efficient models on homogeneous translucent materials

 Efficient models on heterogeneous translucent materials

• A better representation for heterogeneous translucent materials
 Singular Value Decomposition (SVD) approach

• The integration plugin
 Details about the software

 Details about importing the scene parameters

• Results and discussion on the future work

THE INTEGRATION PLUGIN

• The integration plugin is the script that is used to transport the parameters of the
scene that is created in Blender 3D modelling tool to the Mitsuba Renderer

• The Blender 3D Modelling Tool is an open-source SW, which is widely used. It is also
important that Blender includes lots of rendering features

• Mitsuba renderer is also an open-source project. The renderer’s main characteristics
are its efficiency, robustness, scalability, usability and consisting of heavy
optimizations targeted on CPU

• The script is implemented in Python. Since Python has bindings for C++, the
transportation of the parameters need no extra work

THE INTEGRATION PLUGIN

• The plugin is implemented by modifying the already available integration plugin of
Styperek and Juhe’s (2011)

• The implementation can be classified into two groups:
 Firstly, the dipole approach is improved by adding the default material types with

appropriate absorption and scattering coefficient values

 Secondly, SVD approach is implemented in C++. Since the EXE file is defined on the
plugin, the methods of SVD became available. (mitsuba_sss_svd) class is added to
the script for making the SVD approach available for heterogeneous materials on
Blender project

• The script stores the parameters in an XML file. The renderer reads this file to apply
subsurface scattering on the sample material

THE INTEGRATION PLUGIN

THE INTEGRATION PLUGIN

The GUI of the SVD Subsurface

class on the integration plugin

Preview scene of the plugin.

Chessboard 4x4 material

sample is applied on the object

THE INTEGRATION PLUGIN

XML tags are used for

transporting the effects to the

renderer

OUTLINE

• Introduction to subsurface scattering and translucent material representation
 Efficient models on homogeneous translucent materials

 Efficient models on heterogeneous translucent materials

• A better representation for heterogeneous translucent materials
 Singular Value Decomposition (SVD) approach

• The integration plugin
 Details about the software

 Details about importing the scene parameters

• Results and discussion on the future work

RESULTS

• In order to test the plugin’s efficiency, different object samples are rendered
and the memory usage and time used for the operation is compared with
doing it directly using the renderer

• The Hardware: i7-3630QM processor with 8GB RAM and NVIDIA
GTX660M/2GB GDDR5.

• The test objects: Dragon object and kitten object

• Test Material Types: Chessboard (4x4) and Chessboard (8x8)

RESULTS

Chessboard (4 x 4), dragon object

Rendering time: 20 min., Storage size: 36.1 MB

Chessboard (8 x 8),dragon object

Rendering time: 20.9 min., Storage size: 38.42 MB

Chessboard (4 x 4), kitten object

Rendering time: 16.157 min., Storage size: 32.66 MB

Chessboard (8 x 8), kitten object

Rendering time: 17.36 min., Storage size: 34.72 MB

FUTURE WORK AND DISCUSSION

• In this study several subsurface scattering models are analyzed and SVD-based
representation for heterogeneous translucent materials was offered as a plugin on a
software modelling tool

• The experiments on the plugin show that the plugin works efficiently by causing no
delay or no excessive memory usage

• Although SVD-based approach is implemented and tested, other factorization
methods may be added to the plugin as a future study

• The plugin is dependent to Blender Modelling Tool and Mitsuba Renderer. The
availability of the plugin on other platforms would decrease its platform
dependence

REFERENCES

REFERENCES

THANK YOU FOR

LISTENING

ANY QUESTIONS?

