
Ecem İren
1

and Murat Kurt
2

1Department of Computer Engineering, Ege University
2International Computer Institute, Ege University

Introduction
 Various applications in computer graphics need complex

and detailed models for providing reality.

 For this reason, models are captured with high resolution
but complexity of the model causes an increase in the
computational cost.

 To solve this issue, producing simpler forms of such
models has gained great importance.

Introduction

Schroeder et al. [1992]
Decimation of Triangle Meshes

Garland and Heckbert [1997]
Surface Simplification Using Quadric Error Metrics

Introduction

Garland and Heckbert [1998]
Simplifying Surfaces with Color and Texture using Quadric Error Metrics

Tarini et al. [2010]
Practical Quad Mesh Simplification

Our Goal
 Our goal is to observe impacts of mesh simplification on

the visual quality and storage sizes.

 For this purpose, we will use Quadric Error Metrics
(QEM) based mesh simplification technique, which is
already implemented in MeshLab.

 We will evaluate simplification with ten different objects
and analyze results in terms of categories like data size,
number of faces and PSNR differences between simplified
mesh model and original model.

Vertex Decimation Based Techniques

Vertex Classifications

Problem: Works slowly

Triangulation

Vertex Clustering Based Techniques

Low and Tan [1997]
Model Simplification Using Vertex-Clustering

Hua et al. [2005]
Model Simplification Using Vertex-Clustering Based on

Principal Curvature

QEM Based Techniques

Garland and Heckbert [1997]
Edge Contraction

Garland and Heckbert [1997]
Non-Edge Contraction

Garland and Heckbert [1998]
Simplifying Surfaces with Color and Texture using Quadric

Error Metrics

QEM Based Techniques

Tarini et al.[2010]
The set of local operations

Tang et al. [2010]
The edge contraction based on midpoints

Yao et al. [2015]
QEM mesh simplification based on discrete curvature

QEM Based Techniques

Hoppe [1999]
A new QEM which is capable of simplifying meshes with appearance attributes

Hoppe [1999]
It’s faster than previous techniques at the same accuracy

Our QEM Based Technique
 In this study, we use a QEM based

algorithm that depends on iterative
contraction of vertex pairs. It is a
generalization of iterative edge
contraction.

 In this technique, pair selection is
important issue and valid pairs (𝐯1, 𝐯2) →
 𝐯 should be defined according to two

rules:

 (𝐯1, 𝐯2) pair should create an edge.

 𝐯1, 𝐯2 < 𝑡, where t is a threshold
parameter.

Garland and Heckbert [1997]
Edge Contraction

Garland and Heckbert [1997]
Non-Edge Contraction

Our QEM Based Technique
 After deciding all valid pairs, cost of each contraction is computed.

To do this, a symmetric 4x4 Q matrix is assigned with each vertex.

 Error formula is written as Δ(v) = vTQv, where v = 𝒗𝒙 𝒗𝒚𝒗𝒛 𝟏
𝐓

.

 In order to perform contraction, 𝐯1, 𝐯2 → 𝐯, we must choose a
position for 𝐯 which minimizes Δ(𝐯). In this selection, we use the
simple additive rule for the new matrix as 𝐐 = 𝐐𝟏 + 𝐐𝟐.

 The error cost of the new vertex is computed as: Δ(𝐯) = 𝐯T(𝐐𝟏 +
𝐐𝟐) 𝐯. Then all valid pairs are put into a minimum heap with their
contraction costs.

 Lastly, the pair which has least cost is removed from the heap and
costs of all valid pairs are updated iteratively.

Our QEM Based Technique
 The only remaining issue is how to compute the initial Q matrices

from which the error metric Δ(v) is constructed.

 It is observed that each vertex is created from an intersection of a
set of planes with this manner. The error of each vertex is
associated with this set by finding sum of squared distance to its
planes as follows:

Δ(v) = vT(𝐩𝐊𝐩)v,

where p = 𝒂 𝒃 𝒄 𝒅 𝐓 is a plane associated with vertex v, 𝐊𝐩= 𝐩𝐩𝐓

is fundamental error quadric.

 Therefore, initial Q matrix for vertex v is the sum of fundamental
error quadrics 𝐊𝐩.

Algorithm Summary
1. Compute the Q matrices for all the initial vertices by summing

fundamental error quadrics 𝐊𝐩.

2. Select all valid pairs.

3. Compute the optimal contraction target 𝐯 for each valid pair
𝐯1, 𝐯2 . The error Δ(𝐯) = 𝐯T(𝐐𝟏 + 𝐐𝟐) 𝐯 of this target vertex

becomes the cost of contracting that pair.

4. Place all the pairs in a heap keyed on cost with the minimum cost
pair at the top.

5. Iteratively remove the pair 𝐯1, 𝐯2 of least cost from the heap,
contract this pair, and update the costs of all valid pairs involving
𝐯1.

Experimental Results

Table 1: Statistics of the simplified three-dimensional models.

Model
Metrics

#Faces #Vertices Data Size

Armadillo 345,944 172,974 3.9 MB
Bunny 69,451 35,974 2.89 MB
Dragon 871,414 437,645 32.2 MB
Golfball 245,760 122,882 2.66 MB

Happy Buddha 1,087,716 543,652 40.6 MB
Horse 96,964 48,484 1,07 MB
Igea 268,686 134,345 2.96 MB
Lucy 525,814 262,909 6.03 MB

Max Planck 98,260 49,132 1.11 MB
Thai Sculpture 1,000,000 499,999 181 MB

 In this work, we used MeshLab to analyze QEM based mesh simplification
techniques, as QEM based mesh simplification techniques are already implemented
in MeshLab.

Experimental Results

Figure 1: The peak signal-to-noise ratio (PSNR) values of QEM based mesh simplification technique with different values of the
compression ratio (CR).

Experimental Results

Figure 2: A visual analysis of the QEM based mesh simplification technique on various 3D models. From top to bottom: armadillo, dragon, horse, max planck 3D objects. While the first
column represents reference 3D objects, other columns represents simplified 3D objects according to various Compression Ratio (CR) parameters. Below each simplified model, we depict
false-color differences between the reference 3D models and the simplified 3D models. For better comparison, false-color differences were scaled by a factor of 5. Below each simplified 3D

model, we also report PSNR values (higher is better) and CR values.

 (Data Size: 3.9 MB) (CR=1000, PSNR=22.633) (CR=100, PSNR=28.074) (CR=10, PSNR=34.376)

 (Data Size: 32.2 MB) (CR=1000, PSNR=21.571) (CR=100, PSNR=26.318) (CR=10, PSNR=34.122)

Experimental Results

 (Data Size: 1.07 MB) (CR=1000, PSNR=20.782) (CR=100, PSNR=27.694) (CR=10, PSNR=35.136)

 (Data Size: 1.11 MB) (CR=1000, PSNR=25.573) (CR=100, PSNR=31.133) (CR=10, PSNR=37.635)

Figure 2: A visual analysis of the QEM based mesh simplification technique on various 3D models. From top to bottom: armadillo, dragon, horse, max planck 3D objects. While the first
column represents reference 3D objects, other columns represents simplified 3D objects according to various Compression Ratio (CR) parameters. Below each simplified model, we depict
false-color differences between the reference 3D models and the simplified 3D models. For better comparison, false-color differences were scaled by a factor of 5. Below each simplified 3D

model, we also report PSNR values (higher is better) and CR values.

Conclusions
 We have investigated types of simplification methods

such as vertex decimation, vertex clustering and iterative
edge contraction using error quadric metrics.

 Vertex decimation is found to be efficient and produce
good results, vertex clustering generates poor results.

 In our study, we have performed mesh simplification on
different models to see visual effects of it. We have chosen
iterative edge decimation method that is supplied by
MeshLab.

Conclusions
 After experiments, we have realized that when model is

chosen as complex, simplification error between reference
and simplified models increases much more in
comparison with simpler models.

 At the same time, if we use high compression ratio,
higher simplification error is reached. Hence, it could be
concluded that compression ratio affects the error
linearly.

Thank You...

Thank You

