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Abstract

In this work we investigate reciprocity and energy conservation
properties of a BRDF model which is based on a probability dis-
tribution. Representational ability of underlined model is demon-
strated using a measured BRDF data set. We show that our model
satisfies both reciprocity and energy conservation properties of
BRDF.
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1. INTRODUCTION

A complete representation of surface reflection behavior through a
mathematical model can be achieved by considering a number of
variables including angle of light, wavelength, polarization and po-
sition etc. both for incoming and for outgoing lights. A common
approach is to use a simplified model by considering the directional
and spectral properties of underlying reflection only. A function
of incident and reflected angles is called as the Bidirectional Re-
flectance Distribution Function (BRDF) defined as

ρ(~ωi, ~ωo) =
dLo(~ωo)

Li(~ωi) cos θid~ωi
, (1)

where Li and Lo are the incident and reflected radiance, respec-
tively, (~ωi, ~ωo) = {(θi, φi), (θo, φo)} are the corresponding in-
coming and outgoing vectors, and d~ωi is the differential solid angle
in the ωi direction.

A good BRDF model should obey both reciprocity and energy con-
serving principles. Generally, it is difficult to build a BRDF model
that satisfies these two principles. However, some of the BRDFs
have managed to produce visually acceptable images even though
they violate energy conservation or reciprocity or both [1].

An interesting approach for modeling the surface reflectance would
be to treat the BRDF in the context of probability theory. After
a convenient normalization, the BRDF can be viewed as a four-
dimensional (4D) probability density function of elevation and az-
imuth angles of incoming and outgoing vectors. A major problem
of this approach is that it is difficult to construct a multivariate prob-
ability distribution that provides an adequate approximation for a
given BRDF. The most well known multivariate distributions have
the same marginal distributions. For example, the marginal distri-
butions of multivariate normal distribution are all univariate normal.
Generally, BRDF samples do not exhibit such a property. For ex-
ample, the elevation angles have extremely skewed distributions but
the azimuth angles have U-shaped symmetric distributions for most
isotropic materials [2]. A straightforward solution to the problem
of modeling the BRDF through probability distributions could be
transforming the underlying variables into four independent vari-
ables and expressing the BRDF as a product of univariate proba-
bility density functions (pdfs) of these new random variables. An
algorithm has been proposed by Lawrence at al. [3] who have fac-
torized the 4D BRDF in the directions of incident and outgoing di-
rections and have expressed the BRDF as a conditional distribution

for a given outgoing direction vector. Thus, for a fixed outgoing
direction, the problem is reduced to a two-dimensional (2D) case.
Furthermore, the 2D pdf also is factored to obtain a product of two
univariate pdfs. However, this method requires storing a large data
set for the factorization procedures. In a recent work, Öztürk et
al. [2] proposed to model BRDF by employing copula distributions.
Using Archimedean family of distributions for modeling BRDFs, it
is shown empirically that the BRDF can be represented successfully
by the underlying distribution.

In this work we explain the rationale behind representing the BRDF
by copula distributions. We also show that this model satisfies both
reciprocity and energy conservation principles.

2. PREVIOUS WORK

Various models have been proposed for approximating the BRDF.
These models can be classified in two main groups: analytical mod-
els and data-driven models.

The Phong model [4] is one of the oldest and perhaps the most
well known analytical BRDF model. Later, using the halfway vec-
tor, the Blinn-Phong model [5] has been introduced as an improved
version of the Phong model. Ward [6] introduced a BRDF model
for describing the isotropic and anisotropic materials. This model
is based on Gaussian distribution. Duer [7] proposed a variation
of the Ward model. This model has different normalization fac-
tor from the Ward model and this improves the fitting results [8].
The BRDF model, developed by Lafortune et al. [9], can be consid-
ered as an improved and generalized Phong model. It can represent
non-Lambertian diffuse reflections, retro reflections and Fresnel ef-
fects. Ashikhmin and Shirley [10] introduced a model for describ-
ing anisotropic materials with an improved Phong model. Edwards
et al. [1] has modeled the BRDF with a probability distribution.
Other empirical models include the models by Lewis [11] and by
Westlund and Meyer [12].

While aforementioned analytical BRDF models are phenomenolog-
ical, there exist physically-based analytical BRDF models. These
physically-based analytical BRDF models [13], [14], [15], [16],
[17] are based on microfacet theory and can represent effects such
as Fresnel reflection and rough microgeometry. Models that can
represent anisotropic materials have been developed by Kajiya [18],
Poulin and Fournier [19], Ward [6], Lafortune et al. [9], Ashikhmin
and Shirley [10], Duer [7] and Edwards et al. [1].

Other class of analytical BRDF models consists of linear combina-
tion of some set of basis functions. For describing the BRDF with
linear models, Spherical Harmonics were used by Westin et al. [20].
Similarly, Zernike polynomials were used by Koenderink et al. [21]
to model the BRDF. Linear models based on Wavelets [22], [23]
and PCA [24] have also been used for modeling the BRDF. Oz-
turk et al. [25] presented an approach based on principal compo-
nent transformations of some explanatory variables for approximat-
ing both isotropic and anisotropic reflectance for diffuse and glossy
surfaces. These models require a large number of coefficients to
represent the BRDF. Therefore they are inefficient in terms of stor-



age space and computation complexity.

Data-driven models generally depend on large data sets. Matusik
et al. [24] acquired dense measurements of the BRDF and used
these measurements directly in rendering process. Since this rep-
resentation requires large storage space, accurate and compact rep-
resentations of measured BRDFs have been investigated [26], [27],
[28], [3], [29], [30]. In these models, BRDF data are decomposed
using various factorization methods.

3. COPULA DISTRIBUTIONS

Copula is a multivariate cumulative distribution function of the
uniform random variables on the interval [0, 1]. They provide a
simple and general structure for modeling multivariate distribu-
tions through univariate marginal distributions. More specifically
if F1(x1) and F2(x2) are the continuous marginal cumulative dis-
tributions then the joint cumulative distribution function of X1 and
X2 can be constructed in the following form

H(x1, x2) = C{F1(x1), F2(x2)} = C(u1, u2), (2)

where C is the copula function, u1 = F1(x1) and u2 =
F2(x2) [31]. It is well known that F1(x1) and F2(x2) are uni-
formly distributed on the interval [0, 1] and if these cumulative dis-
tributions are continuous then the corresponding copula function is
unique [31]. Based on this definition, it is clear that the marginal
distributions can be determined independently after an appropri-
ate copula model is chosen to represent dependency between the
marginal distributions.

An important family of copulas, called Archimedean copulas, has a
simple form with some desirable properties. These copula distribu-
tions mostly have closed forms and simple solutions. One particu-
larly simple form of a p-dimensional Archimedean copula is

C(u1, u2, . . . , up) = ϕ−1{ϕ(u1) + ϕ(u2) + . . .+ ϕ(up)}, (3)

where the function ϕ is known as generator and ϕ−1 is the inverse
generating function.

Any function satisfying the following properties

• ϕ(1) = 0

• lim
t→0

ϕ(t) =∞

• ϕ′(t) < 0

is defined as a generator. For example, the Frank distribution is
obtained from the generating function

ϕ(t) = ln
{exp(αt)− 1

exp(α)− 1

}
, α 6= 0, (4)

where α is the parameter of the distribution. This generator has the
inverse form as

ϕ−1(s) =
1

α
ln{1 + exp(s)(exp(α)− 1)}, (5)

and the derivation of corresponding copula is straightforward:

H(x1, x2, . . . , xp) = C(u1, u2, . . . , up)

= ϕ−1

{
ln

{exp(αu1)− 1

exp(α)− 1

}
+ · · ·+ ln

{exp(αup)− 1

exp(α)− 1

}}

=
1

α
ln

{
1 +

(exp(αu1)− 1) · · · (exp(αup)− 1)

exp(α)− 1

}
.

(6)

Finally the joint pdf of X1, X2, . . . , Xp is obtained by taking the
pth partial derivative of these variables giving

f(x1, x2, . . . , xp) =
∂p

∂x1∂x2 · · · ∂xp
C(u1, u2, . . . , up). (7)

Thus, the pdfs of 2D and three-dimensional (3D) Frank distribution
can be found as

f(x1, x2) =
αg1(1 + gu1+u2)

(g1 + gu1gu2)2

2∏
i=1

fi(xi),

f(x1, x2, x3)

=
α2g2

1(1 + gu1+u2+u3)(g2
1 − gu1gu2gu3)

(g2
1 + gu1gu2gu3)3

3∏
i=1

fi(xi),

(8)

where gt = exp(αt)− 1 and f1 , f2 and f3 are the marginal pdfs.
It is seen from the equations above, the dependency between the
variables are defined through the Frank copula with one unknown
parameter α.

4. MODELING THE BRDF BY PROBABILITY DIS-
TRIBUTIONS

Suppose for simplicity that the measured BRDF data is obtained
by sampling, uniformly along each azimuth and elevation angles
of incident and outgoing directions. Let (θri , φ

s
i , θ

t
o, φ

u
o ) denote a

sample point at which the corresponding measured BRDFs (̃brstu)
are obtained. Up to a constant, we can view that the measured
BRDF values are the densities of a continuous joint probability
function of θi, φi, θo and φo. In other words we assume that the
measured BRDFs are proportional to the normalized frequencies
of corresponding classes (bins). The normalizing coefficient can be
determined in such a way that the volume of corresponding joint pdf
is equal to 1. When the measured BRDF data is obtained by a uni-
form spacing with length 1 degree in the intervals 0 ≤ θi, θo < 90◦

and 0 ≤ φi, φo < 180◦ then the normalized BRDF values can be
obtained as

brstu =
b̃rstu
b....

, (9)

where r, t = 0, 1, . . . , 89; s, t = 0, 1, . . . , 179 and

b.... =

89∑
r=0

179∑
s=0

89∑
t=0

179∑
u=0

b̃rstu. (10)

Based on this definition, the empirical marginal distributions can be
determined easily. For example, the empirical marginal pdf for θi
is obtained by summing over the other three variables as

frθi = br... =

179∑
s=0

89∑
t=0

179∑
u=0

brstu, (11)

where r = 0, 1, . . . , 89. Similarly, the empirical joint pdf of θi and
φi is determined as

fr,sθi,φi
= brs.., (12)

where r = 0, 1, . . . , 89 and s = 0, 1, . . . , 179. Marginal pdfs of
θi, φi, θo and φo are shown in Figure 1 for an isotropic material. It
is seen that the marginal pdfs of θi and θo both are skewed to the
right and they are almost the same. This similarity property also is
observed for the U-shaped marginal pdfs of φi and φo. The joint
pdf of θi and φi is illustrated in Figure 2 for the same material.

Modeling BRDFs by probability distributions using the standard
coordinate system whose coordinates are defined by θi, φi, θo and
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Figure 1: Empirical marginal distributions of elevation and azimuth angles for incident and outgoing directions (blue-metallic-paint).

φo provide a considerable flexibility. For a given outgoing direc-
tion, the distribution of ~ωi = (θi, φi) can be any bivariate pdf.
However, such a representation usually does not produce a visually
plausible BRDF [1]. Based on the measured BRDF data, Ngan et
al. [8] have shown that the halfway vector representation of BRDF
yields more visually plausible result than that of the standard rep-
resentation. In this work we proceed to use the halfway vector rep-
resentation of Rusinkiewicz [32] for isotropic materials. This rep-
resentation depends on the halfway vector ~ωh = (θh, φh) and the
difference vector ~ωd = (θd, φd). It is well known that isotropic
BRDFs are independent of the angle φh and thus the corresponding
pdf can be expressed as a function of three variables namely θh, θd
and φd.

For an isotropic material the corresponding 3D BRDF copula model
can be written as

ρ(θh, θd, φd) = Kc(u1, u2, u3;α)f1(θh)f2(θd)f3(φd), (13)

where u1 = F1(θh), u2 = F2(θd), u3 = F3(φd), c is 3D copula
pdf, α is the copula parameter and K is the scaling coefficient ob-
tained in a similar way for this 3D case as in Equation (10). The dis-
tribution functions F1, F2 and F3 are the cumulative marginal dis-
tribution functions of θh, θd and φd, respectively. These marginal
distributions are estimated directly from the measured BRDF data.

5. ESTIMATION

Since we treated the normalized BRDF measurements as the ob-
served probability densities corresponding to a bin in a 4D his-
togram, we can assume that the number of observations (frequen-
cies) falling into these bins for this 3D case can be expressed in a
similar way as

nrst = nbrst, (14)

where n = n... represents the total number of frequencies which
is unknown for our case. Any well known statistical estimation

Figure 2: The joint pdf of θi and φi for blue-metallic-paint.

method can be adopted for estimating the unknown parameters of
hypothesized distribution. For example, the maximum likelihood
technique can be used straightforwardly for this purpose.

Based on the data matrix whose rows are organized as follows

{brst, θrh, θsd, φtd}, (15)

the corresponding log-likelihood function for our special case can
be written as

l(λ) = n
∑
r

∑
s

∑
t

brst log{f(λ; θrh, θ
s
d, φ

t
d)}, (16)

where f is the joint pdf and λ is the vector of unknown parameters.
The Archimedean copula distribution used in this work has a single



parameter α. It is interesting to note that the maximization of above
objective function with respect to the parameters does not depend
on the unknown sample size n. Thus the estimates of parameter can
be obtained as a function of normalized measured BRDFs.

One difficulty in modeling BRDF by a multivariate probability
distribution is the number of unknown parameters which is pro-
hibitively large for a practical application. This problem could
be overcome if the corresponding probability model can be con-
structed as a function of marginal distributions of underlying vari-
ables. In such case the estimation process can be performed in two
stages: first the parameters of marginal distributions can be deter-
mined separately and then they are substituted in the objective func-
tion to estimate remaining parameters [33]. In this sense the copula
distributions provide a unified approach both for modeling and es-
timating the BRDF.

Considering some practical difficulties that are encountered in the
tails of distributions, we employed the least squares technique in-
stead of the maximum likelihood technique for estimating the de-
pendency parameter of copula pdf. The least squares estimation
procedure is explained in detail in [2]. The objective function for
obtaining the non-linear least squares estimate of α is defined as

S(α) =

n∑
i=1

m∑
j=1

r∑
k=1

{bijk− c(F (i)
1 , F

(j)
2 , F

(k)
3 ;α)f

(i)
1 f

(j)
2 f

(k)
3 }

2,

(17)
where f (i)

1 = bi.., f
(j)
2 = b.j., f

(k)
3 = b..k and F1, F2 and F3 are

cumulative marginal distributions.

We have observed that the marginal distributions of θh for specular
materials are extremely skewed [2]. Our empirical results showed
that copula distributions do not provide satisfactory approximations
for these cases. We overcome this difficulty by dividing data along
θd into subsamples and fitting the BRDF model to each of these
subsamples. In this work, we obtained 6 subsamples by dividing θd
into 6 non overlapping intervals each with a length of 90◦/6 = 15◦.

6. PROPERTIES OF THE MODEL

A physically plausible BRDF model should obey the reciprocity
and the energy conservation properties. Our BRDF model lends
itself to satisfy both reciprocity and energy conservation properties.

Reciprocity: The reciprocity property of BRDF is expressed by the
following equation

ρ(~ωi, ~ωo) = ρ(~ωo, ~ωi). (18)

That is the BRDF is unchanged when the order of ~ωi and ~ωo is
changed. Our model depends on the halfway vector representation.
To enforce the reciprocity condition we use the identity

φd = φd + π. (19)

Under this enforcement, our model satisfies the reciprocity princi-
ple.

Energy conservation: Energy conservation property of a BRDF
model dictates that for every outgoing light direction∫

Ω

ρ(~ωi, ~ωo)(~ωi · n)d~ωi ≤ 1. (20)

Our BRDF model depends on a multivariate probability distribu-
tion function but it is scaled with a coefficient K. In this sense,
our model may not be considered as an energy conserving model.
However, one can modify this coefficient to account for absorption
of different wavelengths of light as suggested by Edwards et al. [1].

7. IMPORTANCE SAMPLING

In this section we describe a sampling technique that can be used
for our BRDF representation. Our main goal is to evaluate the fol-
lowing integral for a given outgoing direction:

Lo(~ωo) =

∫
Ω

Li(~ωi)ρ(~ωi, ~ωo) cos θid~ωi, (21)

where Ω stands for unit hemisphere above the surface. We need
to develop an efficient sampling procedure since direct or numer-
ical evaluation of the underlying integral is difficult. A com-
mon approach to tackle this problem is to use variance reduc-
tion techniques. This technique exploits the fact that an estimator
(1/n)

∑n
i=1 h(Xi)/f(Xi) where f is the pdf of X and n is the

sample size, is an unbiased estimator of the integral
∫
h(x)dx and

if the function f is similar to the function h then this statistic con-
verges to the integral more quickly.

At a given pixel position and an outgoing direction, the incident
illumination integral is given by Equation (21) where ρ(~ωi, ~ωo) is
the BRDF based on our representation. Since we assume that the
outgoing direction is known, we can use the conditional pdf of ~ωi
given that ~ωo to estimate the integral value as

Lo(θo, φo) =
1

n

n∑
i=1

Li(θi, φi)
ρ(θi, φi, θo, φo) cos θi sin θi

f(θi, φi|θo, φo)
,

(22)
where the conditional pdf in the denominator can be expressed in
terms of the BRDF and the joint marginal density function h of θo
and φo as

f(θi, φi|θo, φo) =
ρ(θi, φi, θo, φo)

h(θo, φo)
. (23)

The marginal distribution of θo and φo can be estimated from the
measured BRDF data. Substituting this conditional pdf in Equation
(22), we get the following simplified expression

Lo(θo, φo) =
1

n
h(θo, φo)

n∑
i=1

Li(θi, φi) cos θi sin θi. (24)

It is interesting to note that the resulting Monte Carlo estimator of
the illumination integral does not contain the BRDF and it can be
computed easily for each incident vector. However, the correspond-
ing incident vector has to be generated from the conditional distri-
bution of θi and φi in Equation (23). It can be shown that the joint
cumulative conditional distribution function of θi and φi is [34]

F (θi, φi|θo, φo) =
ϕ−(2){ϕ(u1) + ϕ(u2) + ϕ(u3) + ϕ(u4)}

ϕ−(2){ϕ(u1) + ϕ(u2)}
,

(25)
where u1 = F1(θo), u2 = F2(φo), u3 = F3(θi), u4 = F4(φi)

and ϕ−(2) stands for the second derivative of the inverse generating
function. An algorithm for generating random numbers from Frank
distribution is provided by Genest and Rivest. However, generating
random variates from the conditional bivariate Frank distribution
using Equation (25) is not straightforward. For this purpose we
generate two standard uniform random variates ξ1 and ξ2 first and
then generate θi as the solution of

ξ1 = Fθ̃i(θ̃i|θo, φo), (26)

and φi as the solution of

ξ2 = Fφ̃i
(φ̃i|θo, φo, θ̃i). (27)

These nonlinear equations can be solved using numerical tech-
niques. Our work is being continued along the line of finding ap-
proximate closed form solutions for these equations.



Figure 3: Various spheres were rendered with our Frank copula model using different materials. Columns left to right: alum-bronze, black-
oxidized-steel, dark-specular-fabric, green-metallic-paint, pvc and silver-metallic-paint. Rows top to bottom: Reference images were rendered
using measured data; images were rendered using our Frank copula model and color-coded difference images (Color-coded differences are
scaled by a factor of five to improve the visibility of differences between the real and approximated images).

8. RESULTS

In this work we used the measured BRDF data of Matusik et al. [24]
for isotropic materials. This data is sampled using the halfway
representation because this representation is more suitable both
for specular and for diffuse materials. All materials in this data
set are sampled uniformly with a resolution 90 × 90 × 180 for
(θh, θd, φd), respectively. We have obtained empirical marginal
distributions of θh, θd and φd and estimated the unknown param-
eters of Archimedean copula pdfs using this data set. To illustrate
the quality of approximation of proposed model we fitted 3D Frank
copula model to 6 different materials which include diffuse, glossy
and specular materials. The results are presented in Figure 3. The
spheres shown on the last row of figure are color-coded difference
images [35] to improve the visibility of differences between the real
and approximated images. Based on these materials the Frank cop-
ula model has produced satisfactory approximations for the real im-
ages.

Our model satisfies the two important properties of BRDF namely
the reciprocity and energy conservation. The reciprocity property
of our model is illustrated in Figure 4. In this figure we inter-
changed the incoming and outgoing direction vectors and rendered
the Princeton scene [3], [1]. It is clearly seen in the color-coded
difference image that the reciprocity property of our BRDF model
is satisfied for this special case.

The energy conservation property of the model is demonstrated by
using the procedure of Neumann et al. [36]. We evaluated the in-
tegral of Equation (20) for each outgoing directions and for three
different isotropic materials. The results are shown in Figure 5. In
these calculations no modification is made on the coefficient K. It
is seen that our model satisfies the energy conserving property for
each of the three materials. This property of our model has been
verified by considering various isotropic materials.

9. CONCLUSION

In this paper we considered the problem of representing BRDF
through a multivariate probability distribution and discussed some
related problems. Archimedean family of copula distributions can
be used to model the BRDF as a function of the corresponding cu-
mulative marginal distributions. This class of distributions not only
provides a simple functional form for modeling the BRDF but also
lends itself to satisfy the reciprocity and energy conservation prop-
erties of an ideal physically-based BRDF.

Modeling the BRDF by a probability distribution has another ad-
vantage that is the Monte Carlo estimator of the illumination inte-
gral can be simplified and hence can be evaluated without using the
estimated BRDF function. In this case, however, the incoming vec-
tor should be sampled using an appropriate simulation technique.
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Kalos, “Compact metallic reflectance models,” Computer
Graphics Forum, vol. 18, no. 3, pp. 161–172, 1999, (Proc.
Eurographics ’99).

ABOUT THE AUTHOR
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