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Abstract
This paper proposes a multi-dimensional adaptive sampling algorithm for rendering applications. Unlike impor-
tance sampling, adaptive sampling does not try to mimic the integrand with analytically integrable and invertible
densities, but approximates the integrand with analytically integrable functions, thus it is more appropriate for
complex integrands, which correspond to difficult lighting conditions and sophisticated BRDF models. We develop
an adaptation scheme that is based on ray-differentials and does not require neighbor finding and complex data
structures in higher dimensions. As a side result of the adaptation criterion, the algorithm also provides error
estimates, which are essential in predictive rendering applications.

1. Introduction

Rendering is mathematically equivalent to the evaluation of
high-dimensional integrals. In order to avoid the curse of
dimensionality, Monte Carlo or quasi-Monte Carlo quadra-
tures are applied, which take discrete samples and approxi-
mate the integral as the weighted sum of the integrand values
in these samples. The challenge of these methods is to find a
sampling strategy that generates a small number of samples
providing an accurate quadrature.

Importance sampling would mimic the integrand with the
density of the samples. However, finding a proper density
function and generating samples with its distribution are
non-trivial tasks. There are two fundamentally different ap-
proaches to generating samples with a probability density.
The inversion method maps uniformly distributed samples
with the inverse of the cumulative probability distribution of
the desired density. However, this requires that the density
is integrable and its integral is analytically invertible. The
integrand of the rendering equation is a product of BRDFs
and cosine factors of multiple reflections, and of the incident
radiance at the end of a path. Due to the imposed require-
ments, importance sampling can take into account only a sin-
gle factor of this product form integral, and even the single
factor is just approximately mimicked except for some very
simple BRDF models. Rejection sampling based techniques,
on the other hand, do not impose such requirements on the
density. However, rejection sampling may ignore many, al-
ready generated samples, which may lead to unpredictable

performance degradation. Rejection sampling inspired many
sampling methods 5, 28, 1, 20, 22, 27. We note that in the con-
text of Metropolis sampling there have been proposals to
exploit even the rejected samples having re-weighted them
30, 10, 17, 13. Hierarchical sampling strategies attack product
form integrands by mimicking just one factor initially, then
improving the sample distribution in the second step either
by making the sampling distribution more proportional to the
integrand 5, 28, 6, 7, 22 or by making the empirical distribution
of the samples closer to the continuous sample distribution
1, 20, 27.

An alternative method of finding samples for integral
quadratures is adaptive sampling that uses the samples to de-
fine an approximation of the integrand, which is then analyt-
ically integrated. Adaptation is guided by the statistical anal-
ysis of the samples in the sub-domains. Should the variance
of the integrand in a sub-domain be high, the sub-domain
is broken down to smaller sub-domains. Adaptive sampling
does not pay attention to the placement of the samples in
the sub-domains. However, placing samples in a sub-domain
without considering the distribution of samples in neighbor-
ing sub-domains will result in very uneven distribution in
higher dimensional spaces. On the other hand, variance cal-
culation needs neighbors finding, which gets also more dif-
ficult in higher dimensions. Thus, adaptive sampling usually
suffers from the curse of dimensionality.

The VEGAS method 18 is an adaptive Monte-Carlo tech-
nique that generates a probability density for importance
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sampling automatically and in a separable form. The reason
of the requirement of separability is that probability densi-
ties are computed from and stored in histogram tables and
s number of 1-dimensional tables need much less storage
space than a single s-dimensional table.

This paper proposes a multi-dimensional adaptive sam-
pling scheme, which:

• works with vector valued functions as well and does not
require the introduction of simple scalar valued impor-
tance unlike in importance sampling algorithms,

• is simple to implement even in higher dimensions,
• has small additional overhead both in terms of storage and

computation, because it does not require complex data
structures or neighborhood searches as other adaptive al-
gorithms,

• provides consistent, deterministic estimates with small
and predictable quadrature error (the term unbiasedness
is not applicable for deterministic sampling algorithms).

2. Previous work

Adaptive sampling: Adaptive sampling uses samples to ap-
proximate the integrand, thus concentrates samples where
the integrand changes significantly. The targeted approxi-
mation is usually piece-wise constant or piece-wise linear
14. Image space adaptive sampling was used even in the first
ray tracer 31, and has been improved by randomization 4 and
by the application of information theory tools 21. Adaptive
sampling methods should decompose the sampling domain,
which is straightforward in 2D but needs special data struc-
tures like the kd-tree in higher dimensions 11.

Ray- and path-differentials: A ray-differential means the
derivative of the contribution of a path with respect to some
variable defining this path. Igehy introduced ray-differentials
with respect to screen-space coordinates 12. Ray-differentials
were used in filtering applications where the differentials de-
fine the footprint of the samples, i.e. the domain the filter.
Suykens 25 generalized this idea for arbitrary sampling pa-
rameters defining the path. Photon differentials 24 also use
this concept to enhance radiance estimates in photon map-
ping. We note that unlike these techniques, we do not use
path-differentials in this paper for setting up filters, but to
guide the sampling process.

Error estimation in rendering: In predictive rendering we
need not only an estimate of the image, but also error bounds
describing the accuracy of the method 29. Unfortunately, the
computation of the error of a rendering algorithm is even
more complex than producing the image 2. Error analysis
was proposed in the context of finite-element based radiosity
methods 19, 3, 4, 23. For Monte-Carlo methods, we can use the
statistics of the samples to estimate the variance of the esti-
mator. For deterministic approaches, in theory, the Koksma-
Hlawka inequality could be used. However, due to the in-

finite variation of the typical integrands in rendering, this
provides useful bounds only in exceptional cases 26.

3. Proposed sampling scheme

For the sake of notational simplicity, let us consider first a 1D
integral of a possibly vector valued integrand f (t) in the do-
main of [0,1]. Suppose that the integration domain is decom-
posed to intervals ∆(1),∆(2), . . . ,∆(M) and one sample point
t(i) is selected in each of them. The integral is estimated in
the following way:

1∫
0

f (t)dt ≈
M

∑
i=1

f (t(i))∆(i). (1)

t1 t2 t3
∆1 ∆2 ∆4

f’ (t3)∆3
f’ (t2)∆2

f’ (t1)∆1

Figure 1: The error of adaptive sampling is the total area of
triangles of bases ∆i and heights that are proportional to ∆i
and to the derivative of integrand f .

Looking at Figure 1, we can conclude that the error of the
integral is the sum of small triangles in between the inte-
grand and its piece-wise constant approximation, which can
be expressed as follows if derivative f ′ exists:∣∣∣∣∣∣

1∫
0

f (t)dt −
M

∑
i=1

f (t(i))∆(i)

∣∣∣∣∣∣≈
M

∑
i=1

| f ′(t(i))|

(
∆(i)

)2

2
. (2)

We minimize the error with the constraint ∑M
i=1 ∆(i) = 1

using the Lagrange multiplier method. The target function
that also includes the constraint is

M

∑
i=1

| f ′(t(i))|

(
∆(i)

)2

2
−λ

(
∑∆(i)−1

)
.

Computing the partial derivatives with respect to ∆(i) and
making it equal to zero, we obtain:

| f ′(t(i))|∆(i) = λ, i = 1,2, . . . ,M,

thus, the variation in all sub-domains should be equal, i.e.
the sampling scheme should concentrate samples where the
integrand changes quickly.

3.1. Extension to integrands typical in rendering

The integrand of rendering is defined in a high-dimensional
path space, which is transformed to a D-dimensional unit
cube U . A point in the unit cube is denoted by u =
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(u1, . . . ,uD). The integrand is high-dimensional, can only be
point sampled, but together with point sampling, its deriva-
tive can also be obtained according to the concept of ray-
differentials.

Adaptive sampling should decompose the integration do-
main, i.e. the unit cube to M sub-domains. Sub-domain i has
edge lengths ∆(i)

1 , . . . ,∆(i)
D and volume

∆(i) = ∆(i)
1 · . . . ·∆(i)

D .

Each sub-domain contains a single sample u(i) from which
the integral is estimated as:∫

U

F(u)du ≈
M

∑
i=1

F(u(i))∆(i). (3)

In order to find the error of this multi-dimensional integral,
we approximate the integrand by the first-order Taylor series
in each sub-domain:

F(u)≈ F(ui)+
D

∑
d=1

∂F(u(i))

∂ud
(ud −u(i)d ).

Substituting this approximation into the quadrature error, we
get:∣∣∣∣∣∣
∫
U

F(u)du−
M

∑
i=1

F(u(i))∆(i)

∣∣∣∣∣∣≈
M

∑
i=1

D

∑
d=1

∣∣∣∣∣∂F(u(i))

∂ud

∣∣∣∣∣ ∆(i)
d
2

∆(i).

(4)

We minimize this error by finding the sub-domain sizes
∆(i)

d satisfying the constraints that sub-domains are disjunct
and their union is the original unit cube.

If sub-domain ∆(i) is subdivided along axis d, the error is
reduced proportionally by

ε(i)d =

∣∣∣∣∣∂F(u(i))

∂ud

∣∣∣∣∣∆(i)
d ∆(i).

To maximize the error reduction, that sub-domain and di-
mension should be selected for subdivision where this prod-
uct is maximum. As each sub-domain stores a single sample,
the reduced error can also be assigned to the samples. Sam-
ples are generated one-by-one. When we are at sample ui,
the integrand as well its partial derivatives are computed, and
each sample is given the vector of possible error reductions:

ε(i) =
[
ε(i)1 , . . . ,ε(i)D

]
.

The maximum error reduction with respect to all samples
and dimensions tells us which sub-domain should be subdi-
vided and also specifies the axis of the subdivision. The sub-
domain is subdivided generating new samples in the neigh-
borhood of the sample associated with the subdivided cell.

3.2. Sample generation and sub-domain subdivision

In order to explore the integration domain and establish the
subdivision scheme, we take a low-discrepancy series 16, 9.

We work with the Halton series, but other low discrepancy
series, such as the Sobol series or (t,m,s)-nets with t = 0
could be used as well 15. For the 1D Halton sequence in base
B, the elemental interval property means that the sequence
will visit all intervals of length [kB−R,(k + 1)B−R) before
putting a new point in an interval already visited. As the se-
quence is generated, the algorithm produces a single point in
each interval of length B−1, then in each interval of length
B−2, etc.

For a D-dimensional sequence of relative prime bases
B1, . . . ,BD, this property means that the sequence will insert
a sample in each cell

[k1B−R1
1 ,(k1 +1)B−R1

1 )× . . .× [kDB−RD
D ,(kD +1)B−RD

D )

before placing a second sample in any of these cells. The
elemental interval property thus implicitly defines an auto-
matically refined sub-domain structure, which can also be
exploited in adaptive sampling.

If we decide to subdivide the sub-domain of sample i
along coordinate axis d, then the following new samples
must be generated:

i+
D

∏
d=1

BRd
d , i+2

D

∏
d=1

BRd
d , . . . , (Bd −1)

D

∏
d=1

BRd
d .
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Figure 2: Evolution of samples and their corresponding sub-
domains in 2D with a Halton sequence of bases B1 = 2 and
B2 = 3.

In Figure 2 we show the evolution of the cell structure in
2D as new samples are introduced. First, we have a single
sample j = 1 in a cell of volume 1 (R1 = 0,R2 = 0). Then,
this cell is subdivided along the first axis where the basis is
B1 = 2, generating a new sample j = 1+ B−R1

1 B−R2
2 = 2.

Simultaneously, the size of the cell is reduced to half (R1 =
1,R2 = 0). In the third step, the cell of sample j = 1 is
subdivided again, but now along the second axis. This hap-
pens by producing new samples j = 1+B−R1

1 B−R2
2 = 3 and

j = 1+2B−R1
1 B−R2

2 = 5, with cell sizes as (R1 = 1,R2 = 1).
Finally the cell of sample j = 2 is subdivided into two parts.

The sampling process can be visualized as a tree (Fig-
ure 2) where upper level nodes are the subdivided sub-
domains, and leaves are the cells containing exactly one
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sample. The number of children of a node equals to the cor-
responding the prime basis number of the Halton sequence.
Although only leaves are relevant for the approximation, it
is worth maintaining the complete tree structure since it also
helps to find that leaf which should be subdivided to reduce
the error most effectively. In upper level nodes, we maintain
the maximum error of its children.

The generation of a new sample is the traversal of this tree.
When traversing a node, we continue descending into the di-
rection of the child with maximum error. When we arrive at
a leaf, the dimension which reduces the error the most is sub-
divided and the leaf becomes a node with children including
the original sample and the new samples. While ascending
on the tree, the maximum error of the new nodes are propa-
gated.

The recursive function implementing this scheme gets a
node c. Calling this function with the root node, it generates
a new sample that reduces the integration error the most, and
updates the complete tree as well:

Process(c)
if (c is a leaf)

i = sample id of this leaf
(R1, . . . ,RD) = subdivision levels of this node
(ε1, . . . ,εD) = errors of this node
Find the dimension d of the highest error εd
for k = 1 to Bd −1 do

Generate sample with id j = i+ k ∏D
d=1 BRd

d
Compute F(u j) and the partial derivatives
Add sample j as child to node c

endfor
Update subdivision levels in sample i
Update error in sample i
Add sample i as child to node c
ε(c) = maximum error of the children

else
Find the child node cfirst with maximum error
Find the second largest error εsecond
εc = max( Process(cfirst ), εsecond )

endif
return ε(c)

end

This algorithm works in arbitrary dimensions. In order to
use the method, first we have to map the integration problem
to the unit cube, and have to establish the formulae for com-
puting the derivatives. This seems complicated, but in fact, it
is quite simple. When we have the program of evaluating the
integrand, the derivatives can be obtained by simply deriv-
ing the program code. In the following section, we discuss a
simple application of the method for environment mapping.

3.3. Robustness issues

So far we assumed that the derivative exists and is an ap-
propriate measure for the change of the function in a sub-
domain. This is untrue where the function has a discontinuity

or when the sub-domain is large. From another point of view,
a consistent estimator should decompose a sub-domain even
if the derivative is zero at the examined sample when the
number of samples goes to infinity. To obtain this behav-
ior, a positive constant is added to the derivative before the
error is computed. This constant is reduced as size of the
sub-domain gets smaller, corresponding to the fact that for
smaller sub-domains the derivative becomes a more reliable
measure of the change of a function.

Note also that the derivative does not exist where the in-
tegrand is discontinuous. This is typically the case when the
integrand includes the visibility factor. Ignoring the visibil-
ity factor in the derivative computation, we can still apply
the method since we use the derivatives only to decide the
“optimal” decomposition of the integration domain, and not
directly for the estimation of the integral. If the decomposi-
tion is not “optimal” due to the ignored factors, the method
will still converge to the real value as more samples are in-
troduced, but the convergence will be slower. In theory, it
would be possible to replace the product of the derivative by
more general estimates of the integration error, but they also
have added cost.

The proposed method uses the Halton sequence which
can fill D-dimensional spaces uniformly with O(logD N/N)
discrepancy. However, we cannot claim that our method re-
mains similarly stable in very high dimensions. The problem
is the index generation needed to find additional samples in
the neighborhood of a given sample, can result in fast grow-
ing sequences 15. So we propose application fields where the
dimension of the integration domain is moderate.

4. Application to environment mapping

Environment mapping 8 computes the reflected radiance of
point x⃗ as

L(⃗x, ω⃗) =
∫
Ω

Lenv(⃗ω′) fr (⃗ω′, x⃗, ω⃗)cosθ′x⃗v(⃗x, ω⃗′)dω′,

where Ω is the set of all directions, Lenv(⃗ω′) is the radiance
of the environment map at illumination direction ω⃗′, fr is
the BRDF, θ′x⃗ is the angle between the illumination direc-
tion and the surface normal at shaded point x⃗, and v(⃗x, ω⃗′)
is the indicator function checking whether no virtual object
is seen from x⃗ at direction ω⃗′, so environment lighting can
take effect. We suppose that the BRDF and the environment
lighting are available in analytic forms.

In order to transform the integration domain, i.e. the set
of illumination directions, to a unit square u1,u2 ∈ [0,1],
we find a parametrization ω⃗′(u1,u2). We shall consider dif-
ferent options for this parametrization, including a global
parametrization that is independent of the surface normal of
the shaded point, and BRDF based parametrizations where
the Jacobi determinant of the mapping compensates the vari-
ation of the BRDF and the cosine factor.
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The integral of the reflected radiance can also be evaluated
in parameter space:

L(⃗x, ω⃗)=
1∫

0

1∫
0

Lenv(⃗ω′(u1,u2))R(u1,u2)v(⃗x, ω⃗
′(u1,u2))du1du2.

where

R(u1,u2) = fr (⃗ω′(u1,u2), x⃗, ω⃗)cosθ′x⃗(u1,u2)
∂ω

∂u1∂u2

is the reflection factor defined by the product of the BRDF,
the cosine of the angle between the surface normal and the
incident direction, and also the Jacobi determinant of the
parametrization.

The derivatives of the integrand F = Lenv ·R ·v of environ-
ment mapping are (d = 1,2):

∂F
∂ud

=
∂Lenv

∂ud
Rv+Lenv ∂R

∂ud
v.

Thus, we need to evaluate the derivative of the reflection fac-
tor and of environment lighting. The derivative computation
is presented in the appendix. The visibility factor is piece-
wise constant, so its derivative would be zero.

5. Results

The environment mapping algorithm has been implemented
using the Direct3D 9 framework and run on an nVidia
GeForce 8800 GFX GPU.

In environment mapping, adaptive sampling generates
points in a unit square according to the product form inte-
grand

Lenv(⃗ω′(u1,u2)) fr (⃗ω′(u1,u2), x⃗, ω⃗)cosθ′x⃗(u1,u2)
∂ω

∂u1∂u2

that includes the environment illumination, the cosine
weighted BRDF and the Jacobi determinant of the mapping.

Figure 3: Samples generated with BRDF parametrization
displayed over the transformed integrand which simplifies to
Lenv(⃗ω′(u1,u2)).

In Figure 3 we depicted the samples assigned to a sin-
gle shaded point. Samples and the transformed integrand are
shown in parameter space. Note that the proposed adaptive
sampling scheme places samples at regions where the illu-
mination changes quickly and also takes care of the stratifi-
cation of the samples.

In Figure 4 we compare the adaptive sampling
scheme involving global parametrization and diffuse BRDF
parametrization to classical BRDF sampling. The proposed
adaptive scheme has significantly reduced the noise. BRDF
parametrization is better than global parametrization as it au-
tomatically ignores that part of the integration domain where
the cosine term would be zero.

Finally in the bottom row of Figure 4 we demonstrate
the adaptive sampling approach in specular surface render-
ing. This figure compares classical BRDF sampling, adap-
tive sampling with global parametrization, and adaptive sam-
pling with Phong parametrization.

6. Conclusions

This paper proposed an adaptive sampling scheme based on
the elemental interval property of low-discrepancy series and
the derivatives of the integrand at the samples. The deriva-
tives provide additional information to the sampling process,
which can place samples where they are really needed. The
low-discrepancy series not only distributes samples globally,
but it also helps refining the sample structure locally without
neighborhood searches.

Having generated the samples and evaluated the integral,
we have all information needed to evaluate equation (4),
which provides error bounds for the estimate. Such bounds
are badly needed in predictive rendering applications.
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Appendix: Derivative computation

6.1. Global parametrization

In the case of global parametrization the unit square is mapped to
the set of directions independently of the local orientation of the
surface. The incident direction is obtained in spherical coordinates
ϕ = 2πu1, θ = πu2, which are converted to Cartesian coordinates of
the system defined by basis vectors i⃗, j⃗,⃗k:

ω⃗′(u1,u2) =

i⃗cos(2πu1) sin(πu2)+ j⃗ sin(2πu1) sin(πu2)+ k⃗ cos(πu2).

The derivatives of the incident direction are as follows:

∂⃗ω′

∂u1
=−2π⃗i sin(2πu1)sin(πu2)+2π j⃗ cos(2πu1) sin(πu2),

∂⃗ω′

∂u2
= π⃗i sin(2πu1)cos(πu2)+π j⃗ cos(2πu1)cos(πu2)− π⃗k sin(πu2).

(5)

The Jacobi determinant of the global parametrization is

∂ω
∂u1∂u2

= 2π2 sinθ = 2π2 sin(πu2).
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BRDF sampling Adaptive sampling Adaptive sampling
global parametrization BRDF parametrization

Figure 4: Diffuse objects (upper and middle row) and specular objects (bottom row) rendered with BRDF sampling, adaptive
sampling with global parametrization, and adaptive sampling with diffuse BRDF parametrization.

6.2. Diffuse BRDF parametrization

We can also use the parametrization developed for BRDF sam-
pling. The illumination direction is generated in the tangent space
of shaded point x⃗, defined by surface normal N⃗⃗x, tangent T⃗⃗x and bi-
normal B⃗⃗x, and it should mimic the cosine distribution:

ω⃗′ = T⃗⃗x cos(2πu1)
√

u2 + B⃗⃗x sin(2πu1)
√

u2 + N⃗⃗x
√

1−u2.

The derivatives are:

∂⃗ω′

∂u1
=−2πT⃗⃗x sin(2πu1)

√
u2 +2πB⃗⃗x cos(2πu1)

√
u2,

∂⃗ω′

∂u2
= T⃗⃗x

cos(2πu1)

2
√

u2
+ B⃗⃗x

sin(2πu1)

2
√

u2
− N⃗⃗x

1
2
√

1−u2
. (6)

The Jacobi determinant compensates the cosine term:

∂ω
∂u1∂u2

=
π

cos θ⃗x
=

π
√

1−u2
.

6.3. Specular BRDF parametrization

In case of a Phong BRDF, the direction is generated in reflection
space defined by the reflection direction

ω⃗r = 2N⃗⃗x(N⃗⃗x · ω⃗)− ω⃗

and two other orthonormal vectors T⃗r and B⃗r that are perpendicular
to ω⃗r . The mapping should follow the (⃗ωr · ω⃗′)n function:

ω⃗′(u1,u2) = T⃗r cos(2πu1)

√
1− (1−u2)

2
n+1 +

B⃗r sin(2πu1)

√
1− (1−u2)

2
n+1 + ω⃗r(1−u2)

1
n+1 .

The derivatives are obtained as:

∂⃗ω′

∂u1
=−2πT⃗r sin(2πu1)

√
1− (1−u2)

2
n+1 +

2πB⃗r cos(2πu1)

√
1− (1−u2)

2
n+1 .
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∂⃗ω′

∂u2
= T⃗r cos(2πu1)

u
n−1
n+1

2

(n+1)
√

1− (1−u2)
2

n+1

+

B⃗r sin(2πu1)
u

n−1
n+1

2

(n+1)
√

1− (1−u2)
2

n+1

− ω⃗r
1

(n+1)(1−u2)
n

n+1
.

(7)

The Jacobi determinant of the mapping is

∂ω
∂u1∂u2

=
2π

(n+1)(⃗ωr · ω⃗′)n
=

2π

(n+1)(1−u2)
n

n+1
.

6.4. Derivatives of the reflection factor

The reflection factor includes the Jacobi determinant of the map-
ping, so it must be discussed taking into account the parametriza-
tion. If we use diffuse BRDF parametrization for a diffuse surface,
the Jacobi determinant will compensate the cosine term, making the
reflection factor constant, and consequently its derivative equal to
zero. Similarly, the specular BRDF parametrization of a specular
surface also results in a zero derivative. For more complex BRDFs
that have no exact importance sampling, we can still use BRDF
parametrization of a similar BRDF, for example, that of the diffuse
or the Phong solutions. Of course, their Jacobi determinants will not
fully eliminate the BRDF and the cosine term, so we have some
non-constant function that needs to be derived.

Let us now consider global parametrization, where the Jacobi de-
terminant is 2π2 sinπu2. If the material is diffuse with diffuse reflec-
tivity kdif, and the surface normal at the shaded point x⃗ is N⃗⃗x, the
partial derivatives of the reflection factor including the BRDF, the
cosine term, and the Jacobi determinant, are (d = 1,2):

∂R
∂u1

= 2π2kdif

(
∂⃗ω′

∂u1
· N⃗x

)
sin(πu2).

∂R
∂u2

= 2π2kdif

((
∂⃗ω′

∂u2
· N⃗x

)
sin(πu2)+π(⃗ω′ · N⃗⃗x)cos(πu2)

)
.

if ω⃗′ · N⃗⃗x ≥ 0 and zero otherwise. The derivative of the incident
direction is given in equation (5).

The derivatives can also be computed for specular BRDFs, for
example, for the Phong BRDF:

R = 2π2kspec
(⃗
ω′ · ω⃗r

)n sin(πu2)

where kspec is the specular reflectivity. Applying the rules of deriva-
tion systematically, we get:

∂R
∂u1

= 2π2nkspec
(⃗
ω′ · ω⃗r

)n−1
(

∂⃗ω′

∂u1
· ω⃗r

)
sin(πu2).

∂R
∂u2

= 2π2nkspec
(⃗
ω′ · ω⃗r

)n−1
(

∂⃗ω′

∂ud
· ω⃗r

)
sin(πu2)+

2π3kspec
(⃗
ω′ · ω⃗r

)n cos(πu2).

6.5. Derivatives of the environment lighting

The environment lighting may be defined analytically or by a texture
map.

6.5.1. Simple sky illumination

For example, a sky illumination with the Sun at direction ω⃗sun can
be expressed as

Lenv (⃗ω′) = Lsky +Lsun (⃗ω′ · ω⃗sun)
s

where Lsky and Lsun are the sky and sun radiances, respectively, and s
is the exponent describing the directional fall-off of the sun radiance.
With this environment radiance, the derivatives of the environment
lighting are (d = 1,2):

∂Lenv

∂ud
= sLsun (⃗ω′ · ω⃗sun)

s−1
(

∂⃗ω′

∂ud
· ω⃗sun

)
.

6.5.2. Texture based environment lighting

If the environment lighting is defined by a texture map, we first
project it into a spherical harmonics basis:

Lenv (⃗ω′) = ∑
l

Lenv
l0 Y 0

l (cosθ)+

∑
l

−l

∑
m=−1

Lenv
lm Y m

l (cosθ, sin(−mϕ))+∑
l

l

∑
m=l

Lenv
lm Y m

l (cosθ,cos(mϕ)),

where Y m
l are the spherical harmonics basis functions.

Global spherical angles ϕ and θ can be expressed as

cosθ = z, cosϕ =
x√

1− z2
, sinϕ =

y√
1− z2

.

where x,y, z are the components of the incident direction vector

ω⃗′(u1,u2) = (x(u1,u2),y(u1,u2), z(u1,u2)).

The derivatives of the environment requires the derivatives of the
spherical basis functions. In practice the number of bands l is quite
small, thus it is worth pre-computing these basis functions in alge-
braic form by hand.

The first 9 spherical basis functions are obtained as:

Y 0
0 = 0.282095

Y−1
1 = 0.488603y

Y 0
1 = 0.488603z

Y 1
1 = 0.488603x

Y−2
2 = 1.092548xy

Y−1
2 = 1.092548yz

Y 0
2 = 0.315392(3z2 −1)

Y 1
2 = 1.092548xz

Y 2
2 = 0.546274(x2 − y2)

The derivatives with respect to ud (d = 1,2) of the basis functions
can be obtained by a direct derivation of the formulae:

∂Y 0
0

∂ud
= 0

∂Y−1
1

∂ud
= 0.488603

∂y
∂ud

∂Y 0
1

∂ud
= 0.488603

∂z
∂ud

∂Y 1
1

∂ud
= 0.488603

∂x
∂ud
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∂Y−2
2

∂ud
= 1.092548

(
∂x

∂ud
y+ x

∂x
∂ud

)
∂Y−1

2

∂ud
= 1.092548

(
∂y

∂ud
z+ y

∂z
∂ud

)
∂Y 0

2

∂ud
= 0.315392

(
6z

∂z
∂ud

)
∂Y 1

2

∂ud
= 1.092548

(
∂x

∂ud
z+ x

∂z
∂ud

)
∂Y 2

2

∂ud
= 0.546274

(
2x

∂x
∂ud

−2y
∂y

∂ud

)
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