Efficient BRDF Sampling Using Projected Deviation Vector Parameterization

Tanaboon Tongbuasirilai¹ Jonas Unger¹ Murat Kurt²

gold-metallic-paint3 Reference

Reconstruction

Agenda

- Introduction
- Projected Deviation Vector Parameterization
- Basis vector BRDF measurements
- Results

Introduction

Bidirectional Reflectance Distribution Function (BRDF)

- Isotropic BRDF
- Anisotropic BRDF
- Spatially Varying BRDF
- Etc.
- BRDF Parameterization
 - Spherical coordinates (Standard Parameterization)
 - Rusinkiewicz (Half-Diff Parameterization)
 - Löw et al. (PDV Parameterization)
 - Etc.

BRDF measurements and inferring

- Gonio-reflectometer
- Ward (Hemispherical mirror and fisheye lens)
- MERL
- Romeiro et al. (Passive reflectometry)
- Xu et al. and Nielsen et al. (PCA for minimal sampling)

Projected Deviation Vector (PDV) Parameterization

- For isotropic BRDFs, PDV has 3 parameters.

 (θ_r, d_p, ϕ_p)

Parameter Sampling

- Linear spacing of d_p is not suitable.
- It would capture much data of unnecessary part.
- The highly distributed reflectance is close to the BRDF lobe reflection.

Parameter Sampling

- Inversion method of normalized mean energy.

3D and 2D coordinates of PDV

2D

3D

Examples of BRDFs in PDV

 $\theta_r = 0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$

Figures from : BRDF models for accurate and efficient rendering of glossy surfaces by Löw et al.

PDV Coordinates Vs. BRDF Iso-contour

The PDV coordinates behave similarly to BRDF iso-contour plots.

Right figures from : BRDF models for accurate and efficient rendering of glossy surfaces by Löw et al.

BRDF Basis Measurements

Assumptions

- The PDV parameterization can be described by a function of (θ_r, d_p) because of the radial symmetry of BRDF values.
- The logarithmic transformed BRDF values on PDV space are separable.

$$\rho_t(\theta_r, d_p, \phi_p) = F_1(\theta_r) F_2(d_p) \quad \phi_p)$$

BRDF Basis Measurements

Estimating 3D BRDF with 2D BRDF

BRDF Basis Measurements (θ_r factor)

BRDF Basis Measurements (d_p factor)

BRDF Reconstruction

Results – Reconsturction Errors

Results - Rendering

Questions ?