The 5th Eurographics Workshop on Material Appearance Modeling: Issues and Acquisition

Experimental Analysis of BSDF Models

Murat Kurt¹

¹International Computer Institute, Ege University

Introduction

- Optically thin, translucent materials, such as papers, glasses and daylight redirecting films, are represented by Bidirectional Scattering Distribution Functions (BSDFs) [NRH*77].
- The BSDF is a sum of Bidirectional Reflectance Distribution Function (BRDF) and Bidirectional Transmittance Distribution Function (BTDF) [NRH*77], therefore it represents both light reflection and light transmission of translucent materials.

Introduction

Walter et al. [WMLTo7] A Microfacet-Based BSDF Model

Ward et al. [WKB12] A Data-Driven BSDF Representation

Problem: Finding Anisotropic BSDF Measurements

Introduction

Apian-Bennewitz [AB14] **pgII gonio-photometer**

Problem: Finding A Large BSDF Database

BSDF Data Set and Acquisition

Apian-Bennewitz [AB14] *pgII gonio-photometer*

(a) Outgoing directions, (b) Incoming directions *pgII gonio-photometer*

BSDF Data Set and Acquisition

Real photographs from our *pgII gonio-photometer* setup

Hunter douglas material

Orange glass material

Structured glass material

BSDF Models

Walter et al. [WMLT07] A Microfacet-Based BSDF Model

Ward et al. [WKB12] *A Data-Driven BSDF Representation*

 These BSDF models differ in their degrees of freedom and goals, and we focus on the numerical ability to fit our measured BSDF data, computation times and storage needs.

Walter et al. BSDF Model

• Walter et al.'s [WMLT07] BSDF model can be formalized as: $f(\omega_i, \omega_o) = \frac{k_d}{\pi} + k_{sr} \frac{F(\omega_i, \omega_{hr}, f_{0r}) G(\omega_i, \omega_o, \omega_{hr}, \alpha_r) D(\omega_{hr}, \alpha_r)}{4|\omega_i \cdot \omega_n||\omega_o \cdot \omega_n|}$

$$+ k_{st} \frac{|\omega_i \cdot \omega_{ht}| |\omega_o \cdot \omega_{ht}|}{|\omega_i \cdot \omega_n| |\omega_o \cdot \omega_n|} \times \frac{\eta_o^2 (1 - F(\omega_i, \omega_{ht}, f_{0t})) G(\omega_i, \omega_o, \omega_{ht}, \alpha_t) D(\omega_{ht}, \alpha_t)}{(\eta_i (\omega_i \cdot \omega_{ht}) + \eta_o (\omega_o \cdot \omega_{ht}))^2}$$

 ω_i : incoming light vector

 ω_o : outgoing view vector

$$\omega_{hr} = \frac{(\omega_i + \omega_o)}{\|\omega_i + \omega_o\|} : halfway reflection vector$$
$$\omega_{ht} = \frac{-(\eta_i \omega_i + \eta_o \omega_o)}{\|\eta_i \omega_i + \eta_o \omega_o\|} : halfway transmission vector$$

 k_d, k_{sr}, k_{st} : diffuse, specular reflection and specular transmission coefficients η_i, η_o : index of refraction for the incident and the transmitted side of the surface α_r, α_t : width parameter for the incident and the transmitted side of the sur f_{0r}, f_{0t} : Fresnel coefficient for the incident and the transmitted side of the

Walter et al. BSDF Model

• To compute Fresnel term, we use Schlick approximation [Sch94] as:

$$F(\omega_{i}, \omega_{h}, f_{0}) = f_{0} + (1 - f_{0})(1 - (\omega_{i} \cdot \omega_{h}))^{5}$$

• To compute $G(\cdot)$ term, we use Smith approximation as:

 $G(\omega_i, \omega_o, \omega_h, \alpha) \approx G_1(\omega_i, \omega_h, \alpha)G_1(\omega_o, \omega_h, \alpha)$

• To compute $G_1(\cdot)$ and $D(\cdot)$ term, we use the following GGX distribution:

$$D(\omega_h, \alpha) = \frac{\alpha^2 \chi^+(\omega_h \cdot \omega_n)}{\pi \cos^4 \theta_h (\alpha^2 + \tan^2 \theta_h)^2}$$
$$G_1(\omega, \omega_h, \alpha) = \chi^+ \left(\frac{\omega \cdot \omega_h}{\omega_h}\right) \frac{2}{4\pi \sqrt{4\pi m^2 + 2\pi m^2}}$$

$$(\omega, \omega_h, \alpha) = \chi^{-1} \left(\frac{1}{\omega \cdot \omega_n} \right) \frac{1}{1 + \sqrt{1 + \alpha^2 \tan^2 \theta}}$$

 $\chi^+(a)$: the positive function

Walter et al. BSDF Model

- We extend Ngan et al.'s [NDM05] fitting procedure to represent measured BSDFs by Walter et al.'s analytical BSDF model.
- We apply a constrained nonlinear optimization technique. We estimate:

 $\alpha_r, \alpha_t, \eta_o, \eta_i, f_{0r}, f_{0t}$: nonlinearly by using a constrained minimization algorithm

 k_d, k_{sr}, k_{st} : computed analytically as a subprocedure based on a linear least square optimization

• To optimize fitting results for finding a global minimum, we restart the optimization with a different set of initial guesses and we take a set of parameters which leads the minimum L² error.

- Ward et al. [WKB12] proposed an XML representation and an Open Source C library to support BSDFs in rendering applications.
 - It allows for the efficient representation, query and Monte Carlo sampling of real-world BSDFs in a model-free framework.
 - It includes two data-driven BSDF representation.
 - Matrix-based BSDF representation.
 - Tensor tree BSDF representation.
 - It helps to handle advanced schemes such as Complex Fenestration Systems (CFSs).
 - Isotropic BSDF data is represented in $(\theta_i, \theta_o, \phi_{diff} = \phi_o \phi_i)$ parameters, anisotropic BSDF data is represented $(\theta_i, \phi_i, \theta_o, \phi_o)$ parameters.

Matrix-based BSDF representation

Reference image

- Since our BSDF measurements are sparse and irregular, we need to fill these BSDF measurements accurately to be able to represent them with Tensor tree BSDF representation.
- In this work, we use Ward et al.'s [WKB14] Lagrangian based interpolation technique for filling our sparse set of incident angle measurements. It includes three steps:
 - For each incident direction, measured BSDF values are fitted by a sum of Gaussian lobes.
 - A spherical Delaunay triangulation of the incident directions are constructed.
 - For each edge of the triangulation, a transport plan is computed for shifting Gaussian lobes in the first vertex to Gaussian lobes in the second vertex

Linear interpolation

Ward et al.'s [WKB14] Lagrangian mass transport based interpolation

- To investigate abilities of BSDF models, we used our BSDF measurements and BSDF measurements from BME database [AB14].
- The nonlinear parameters of Walter et al. [WMLT07] BSDF model is estimated by using fmincon [WMNO11] function in MATLAB library.
- We optimize L² errors [NDM05] in this fitting procedure, and linear parameters are estimated as a subprocedure based on a linear least square optimization.

- To represent BSDF measurements with Ward et al. [WKB12] Tensor tree BSDF representation, we first interpolated it by Ward et al. [WKB14] interpolation technique.
- To simulate both Walter et al.'s BSDF model and Ward et al.'s interpolation technique in RADIANCE [LS98], tensor tree BSDF representations are constructed by using bsdf2ttree function in RADIANCE.

(a) Photograph

(b) Walter et al. [WMLT07]

(c) Ward et al. [WKB12]

(a) Photograph

(b) Walter et al. [WMLT07]

(c) Ward et al. [WKB12]

Material Name	Measured	Walter et al. [WMLTo ₇]	Ward et al. [WKB12]
Hunter douglas	257MB	0.25MB	23.7MB
Orange glass	158MB	0.28MB	18.6MB
Structured glass	195.8MB	0.76MB	20.6MB

Table 1: Required storage spaces of BSDF measurements and BSDF representations for various materials.

• On a 4-core laptop, average computation times of Walter et al.'s BSDF model and Ward et al.'s BSDF interpolation technique are 12 minutes, and 46 minutes, respectively.

Conclusions

- We measured BSDF data from 3 different optically thin, translucent materials, and made experimental analysis on these BSDF measurements and BSDF measurements from BME database by representing them with various BSDF models.
- We have shown that compared to Walter et al.'s BSDF model, Ward et al.'s data-driven BSDF representation provides more accurate representations, while it requires ~60× storage needs and ~4× computation times.

• We're planning to make publicly available our BSDF measurements and fitting results for giving a start to construct a huge BSDF database.

Thank You...

Thank You

