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Abstract

This paper proposes an adaptive sampling algorithm for environ-
ment mapping. Unlike importance sampling, adaptive sampling
does not try to mimic the integrand with analytically integrable and
invertible densities, but approximates the integrand with analyti-
cally integrable functions, thus it is more appropriate for complex
integrands, which correspond to difficult lighting conditions and so-
phisticated BRDF models. We develop an adaptation scheme that is
based on ray differentials and does not require neighbor finding and
complex data structures in higher dimensions. As a side result of
the adaptation criterion, the algorithm also provides error estimates,
which are essential in predictive rendering applications.

1 Introduction

Rendering is mathematically equivalent to the evaluation of high-
dimensional integrals. In order to avoid the curse of dimensionality,
Monte Carlo or quasi-Monte Carlo quadratures are applied, which
take discrete samples and approximate the integral as the weighted
sum of integrand values in these samples. The challenge of these
methods is to find a sampling strategy that generates a small number
of samples providing an accurate quadrature.

Importance sampling would mimic the integrand with the density
of samples. However, finding a proper density function and gen-
erating samples with its distribution are non-trivial tasks. There
are two fundamentally different approaches for generating samples
with a probability density. The inversion method maps uniformly
distributed samples with the inverse of cumulative probability dis-
tribution of desired density. However, this requires that the density
is integrable and its integral is analytically invertible. The inte-
grand of rendering equation is a product of BRDF and cosine factor
of multiple reflection, and of the incident radiance at the end of a
path. Due to the imposed requirements, importance sampling can
take into account only a single factor of this product form integral,
and even the single factor is just approximately mimicked except
for some very simple BRDF models. Rejection sampling based
techniques, on the other hand, do not impose such requirements
on the density. However, rejection sampling may ignore many, al-
ready generated samples, which may lead to unpredictable perfor-
mance degradation. Rejection sampling inspired many sampling
methods [Agarwal et al. 2003; Ostromoukhov et al. 2004; Burke
et al. 2005; Talbot et al. 2005; Rousselle et al. 2008; Szirmay-Kalos
and Szécsi 2009]. We note that in the context of Metropolis sam-
pling there have been proposals to exploit even the rejected sam-
ples having reweighted them [Veach and Guibas 1997; Kelemen
et al. 2002; Cappé et al. 2004; Lai et al. 2007]. Hierarchical sam-
pling strategies attack product form integrands by mimicking just
one factor initially, then improving the sample distribution in the
second step either by making the sampling distribution more pro-
portional to the integrand [Burke et al. 2005; Talbot et al. 2005;
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Clarberg et al. 2005; Cline et al. 2006; Rousselle et al. 2008] or by
making the empirical distribution of samples closer to the continu-
ous sample distribution [Agarwal et al. 2003; Ostromoukhov et al.
2004; Szirmay-Kalos and Szécsi 2009].

An alternative method of finding samples for integral quadratures is
adaptive sampling that uses the samples to define an approximation
of the integrand, which is then analytically integrated. Adaptation
is guided by the statistical analysis of samples in the subdomains.
Should the variance of integrand in a subdomain be high, the sub-
domain is broken down to smaller subdomains. Adaptive sampling
does not pay attention to the placement of samples in the subdo-
mains. However, placing samples in a subdomain without consid-
ering the distribution of samples in neighboring subdomains will
result in very uneven distribution in higher dimensional spaces. On
the other hand, variance calculation needs neighbors finding, which
gets also more difficult in higher dimensions. Thus, adaptive sam-
pling usually suffers from the curse of dimensionality.

The VEGAS method [Lepage 1980] is an adaptive Monte Carlo
technique that generates a probability density for importance sam-
pling automatically and in a separable form. The reason of re-
quirement of separability is that probability densities are com-
puted from and stored in histogram tables and s number of one-
dimensional (1D) tables need much less storage space than a single
s-dimensional table.

This paper proposes a multidimensional adaptive sampling scheme,
which:

• has small additional overhead both in terms of storage and
computation, because it does not require complex data struc-
tures or neighborhood searches as other adaptive algorithms,

• provides consistent, deterministic estimates with small and
predictable quadrature error (the term unbiasedness is not ap-
plicable for deterministic sampling algorithms).

2 Previous work

Adaptive sampling: Adaptive sampling uses samples to approxi-
mate the integrand, thus concentrates samples where the integrand
changes significantly. The targeted approximation is usually piece-
wise constant or piecewise linear [Keller 2001]. Image space adap-
tive sampling was used even in the first ray tracer [Whitted 1980],
and has been improved by randomization [Bolin and Meyer 1997]
and by the application of information theory tools [Rigau et al.
2003]. Adaptive sampling methods should decompose the sam-
pling domain, which is straightforward in two-dimensional (2D) but
needs special data structures like the kd-tree in higher dimensions
[Hachisuka et al. 2008].

Ray and path differentials: A ray differential means the derivative
of contribution of a path with respect to some variable defining this
path. Igehy introduced ray differentials with respect to screen space
coordinates [Igehy 1999]. Ray differentials were used in filtering
applications where the differentials define the footprint of samples,
i.e. the domain the filter. Suykens and Willems [Suykens and



Willems 2001] generalized this idea for arbitrary sampling parame-
ters defining the path. Photon differentials [Schjøth et al. 2007] also
use this concept to enhance radiance estimates in photon mapping.
We note that unlike these techniques, we do not use path differen-
tials in this paper for setting up filters, but to guide the sampling
process.

Error estimation in rendering: In predictive rendering we need
not only an estimate of the image, but also error bounds describing
the accuracy of method [Ulbricht et al. 2006]. Unfortunately, the
computation of error of a rendering algorithm is even more com-
plex than producing the image [Arvo et al. 1994]. Error analysis
was proposed in the context of finite-element based radiosity meth-
ods [Lischinski et al. 1994; Bekaert and Willems 1996; Bolin and
Meyer 1997; Sbert 1997]. For Monte Carlo methods, we can use
the statistics of samples to estimate the variance of estimator. For
deterministic approaches, in theory, the Koksma-Hlawka inequality
could be used. However, due to the infinite variation of typical inte-
grands in rendering, this provides useful bounds only in exceptional
cases [Szirmay-Kalos et al. 1997].

3 Proposed sampling scheme

For the sake of notational simplicity, let us consider first a 1D in-
tegral of a possibly vector valued integrand f (t) in the domain of
[0,1]. Suppose that the integration domain is decomposed to inter-
vals ∆(1),∆(2), . . . ,∆(M) and one sample point t(i) is selected in each
of them. The integral is estimated in the following way:

1∫
0

f (t)dt ≈
M

∑
i=1

f (t(i))∆(i). (1)

t (1) t (2) t (3)
∆(1) ∆(2) ∆(3)

f’(t (3))∆(3)f’(t (2))∆(2)

f’(t(1))∆(1)

Figure 1: The error of adaptive sampling is the total area of triangles
of bases ∆(i) and heights that are proportional to ∆(i) and to the
absolute value of derivative of integrand f .

Looking at Figure 1, we can conclude that the error of integral is
the sum of small triangles in between the integrand and its piece-
wise constant approximation, which can be expressed as follows if
derivative f ′ exists:∣∣∣∣∣∣

1∫
0

f (t)dt −
M

∑
i=1

f (t(i))∆(i)

∣∣∣∣∣∣≈
M

∑
i=1

| f ′(t(i))|

(
∆(i)
)2

2
. (2)

We minimize the error with the constraint ∑M
i=1 ∆(i) = 1 using the

Lagrange multiplier method. The target function that also includes
the constraint scaled by λ is

M

∑
i=1

| f ′(t(i))|

(
∆(i)
)2

2
−λ

(
M

∑
i=1

∆(i)−1

)
.

Computing the partial derivatives with respect to ∆(i) and making it
equal to zero, we obtain:

| f ′(t(i))|∆(i) = λ , i = 1,2, . . . ,M,

thus, the variation in all subdomains should be equal, i.e. the
sampling scheme should concentrate samples where the integrand
changes quickly.

3.1 Extension to 2D integrands

In environment mapping, the integrand is 2D. The 2D domain is
transformed to a unit square U . A point in the square is denoted by
u = (u1,u2). The integrand can only be point sampled, but together
with point sampling, its derivative can also be obtained according
to the concept of ray differentials.

Adaptive sampling should decompose the integration domain, i.e.
the unit square to M subdomains. Subdomain i has edge lengths
∆(i)

1 ,∆(i)
2 and area

∆(i) = ∆(i)
1 ·∆(i)

2 .

Each subdomain contains a single sample u(i) from which the inte-
gral is estimated as:

∫
U

F(u)du ≈
M

∑
i=1

F(u(i))∆(i). (3)

In order to find the error of this 2D integral, we approximate the
integrand by the first-order Taylor series in each subdomain:

F(u)≈ F(u(i))+
∂F(u(i))

∂u1
(u1 −u(i)1 )+

∂F(u(i))

∂u2
(u2 −u(i)2 ).

Substituting this approximation into the quadrature error, we get:∣∣∣∣∣∣
∫
U

F(u)du−
M

∑
i=1

F(u(i))∆(i)

∣∣∣∣∣∣≈
M

∑
i=1

[∣∣∣∣∣∂F(u(i))

∂u1

∣∣∣∣∣ ∆(i)
1
2

∆(i)+

∣∣∣∣∣∂F(u(i))

∂u2

∣∣∣∣∣ ∆(i)
2
2

∆(i)

]
. (4)

We minimize this error by finding the subdomain sizes ∆(i)
d satisfy-

ing the constraints that subdomains are disjunct and their union is
the original unit square.

If subdomain ∆(i) is subdivided along axis d, the error is reduced
proportionally by

ε(i)d =

∣∣∣∣∣∂ F(u(i))

∂ud

∣∣∣∣∣ ∆(i)
d
2

∆(i).

To maximize the error reduction, that subdomain and dimension
should be selected for subdivision where this product is maximum.
As each subdomain stores a single sample, the reduced error can
also be assigned to the samples. Samples are generated one-by-
one. When we are at sample u(i), the integrand as well its partial
derivatives are computed, and each sample is given the vector of
possible error reductions:

ε(i) =
[
ε(i)1 ,ε(i)2

]
.



The maximum error reduction with respect to all samples and di-
mensions tells us which subdomain should be subdivided and also
specifies the axis of subdivision. The subdomain is subdivided gen-
erating new samples in the neighborhood of sample associated with
the subdivided cell.

3.2 Sample generation and subdomain subdivision

In order to explore the integration domain and establish the sub-
division scheme, we take a low-discrepancy series [Niederreiter
1992; Kollig and Keller 2002; Dmitriev et al. 2002]. We work
with the Halton series, but other low discrepancy series, such as
the Sobol series or (t,m,s)-nets with t = 0 could be used as well
[Keller 2006]. For the 1D Halton sequence in base B, the elemental
interval property means that the sequence will visit all intervals of
length [kB−R,(k+1)B−R) where exponent R determines the length
of interval, before putting a new point in an interval already visited.
As the sequence is generated, the algorithm produces a single point
in each interval of length B−1, then in each interval of length B−2,
etc.

For a 2D sequence of relative prime bases B1,B2, this property
means that the sequence will insert a sample in each cell

[k1B−R1
1 ,(k1 +1)B−R1

1 )× [k2B−R2
2 ,(k2 +1)B−R2

2 ),

where R1 and R2 define the horizontal and vertical sizes of cell,
before placing a second sample in any of these cells. The elemen-
tal interval property thus implicitly defines an automatically refined
subdomain structure, which can also be exploited in adaptive sam-
pling. If we decide to subdivide the subdomain of sample i along
coordinate axis d, then the following new samples must be gener-
ated:

i+BR1
1 BR2

2 , i+2BR1
1 BR2

2 , . . . , (Bd −1)BR1
1 BR2

2 .
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Figure 2: Evolution of samples and their corresponding subdomains
in 2D with a Halton sequence of bases B1 = 2 and B2 = 3.

In Figure 2, we show the evolution of cell structure in 2D as new
samples are introduced. First, we have a single sample j = 1 in
a cell of volume 1 (R1 = 0,R2 = 0). Then, this cell is subdi-
vided along the first axis where the basis is B1 = 2, generating a
new sample j = 1+BR1

1 BR2
2 = 2. Simultaneously, the size of cell

is reduced to half (R1 = 1,R2 = 0). In the third step, the cell of
sample j = 1 is subdivided again, but now along the second axis.
This happens by producing new samples j = 1+BR1

1 BR2
2 = 3 and

j = 1+2BR1
1 BR2

2 = 5, which results in cell sizes as (R1 = 1,R2 = 1).
Finally the cell of sample j = 2 is subdivided into two parts.

The sampling process can be visualized as a tree (see Figure 2)
where upper level nodes are the subdivided subdomains, and leaves

are the cells containing exactly one sample. The number of children
of a node equals to the corresponding prime basis number of Halton
sequence. Although only leaves are relevant for the approximation,
it is worth maintaining the complete tree structure since it also helps
to find that leaf which should be subdivided to reduce the error most
effectively. In upper level nodes, we maintain the maximum error
of its children.

The generation of a new sample is the traversal of this tree. When
traversing a node, we continue descending into the direction of
child with maximum error. When we arrive at a leaf, the dimen-
sion which reduces the error the most is subdivided and the leaf
becomes a node with children including the original sample and the
new samples. While ascending on the tree, the maximum error of
new nodes are propagated.

The recursive function implementing this scheme gets a node c.
Calling this function with the root node, it generates a new sample
that reduces the integration error the most, and updates the complete
tree as well:

Process(c)
if (c is a leaf)

i = sample id of this leaf
(R1,R2) = subdivision levels of this node
(ε1,ε2) = errors of this node
Find the dimension d of the highest error εd

for k = 1 to Bd −1 do
Generate sample with id j = i+ kBR1

1 BR2
2

Compute F(u( j)) and the partial derivatives
Add sample j as child to node c

endfor
Update subdivision levels in sample i
Update error in sample i
Add sample i as child to node c
ε(c) = maximum error of the children

else
Find the child node cfirst with maximum error
Find the second largest error εsecond

ε(c) = max( Process(cfirst ), εsecond )
endif
return ε(c)

end

3.3 Robustness issues

So far we assumed that the derivative exists and is an appropriate
measure for the change of function in a subdomain. This is untrue
where the function has a discontinuity or when the subdomain is
large. A consistent estimator should decompose a subdomain even
if the derivative is zero at the examined sample when the number of
samples goes to infinity. To obtain this behavior, a positive constant
is added to the derivative before the error is computed. This con-
stant is reduced as size of the subdomain gets smaller, correspond-
ing to the fact that for smaller subdomains the derivative becomes a
more reliable measure of the change of a function.

Note also that the derivative does not exist where the integrand is
discontinuous. This is typical when the integrand includes the visi-
bility factor. Ignoring the visibility factor in the derivative compu-
tation, we can still apply the method since we use the derivatives
only to decide the “optimal” decomposition of integration domain,
and not directly for the estimation of integral. If the decomposition
is not “optimal” due to the ignored factors, the method will still
converge to the real value, but the convergence will be slower.

The proposed method uses the Halton sequence which can fill
D-dimensional spaces uniformly with O(logD N/N) discrepancy.



However, we cannot claim that our method remains similarly sta-
ble in very high dimensions. The problem is the index generation
needed to find additional samples in the neighborhood of a given
sample, can result in fast growing sequences [Keller 2006]. So we
propose application fields where the dimension of integration do-
main is moderate.

4 Application to environment mapping

Environment mapping [Debevec 1998] computes the reflected radi-
ance of point x⃗ as

L(⃗x, ω⃗) =
∫
Ω

Lenv(ω⃗ ′) fr(ω⃗ ′, x⃗, ω⃗)cosθ ′
x⃗v(⃗x, ω⃗ ′)dω ′,

where Ω is the set of all directions, Lenv(ω⃗ ′) is the radiance of en-
vironment map at illumination direction ω⃗ ′, fr is the BRDF, θ ′

x⃗ is
the angle between the illumination direction and the surface normal
at shaded point x⃗, and v(⃗x, ω⃗ ′) is the indicator function checking
whether no virtual object is seen from x⃗ at direction ω⃗ ′, so environ-
ment lighting can take effect. We suppose that the BRDF and the
environment lighting are available in analytic forms.

In order to transform the integration domain, i.e. the set of il-
lumination directions, to a unit square u1,u2 ∈ [0,1], we find a
parametrization ω⃗ ′(u1,u2). We shall consider different options for
this parametrization, including a global parametrization that is in-
dependent of the surface normal of shaded point, and BRDF based
parameterizations where the Jacobi determinant of mapping com-
pensates the variation of BRDF and cosine factor.

The integral of reflected radiance can also be evaluated in parameter
space:

L(⃗x, ω⃗) =

1∫
0

1∫
0

Lenv(ω⃗ ′(u1,u2))R(u1,u2)v(⃗x, ω⃗ ′(u1,u2))du1du2,

where

R(u1,u2) = fr(ω⃗ ′(u1,u2), x⃗, ω⃗)cosθ ′
x⃗(u1,u2)

∂ω
∂u1∂u2

is the reflection factor defined by the product of BRDF, the cosine
of angle between the surface normal and the incident direction, and
also the Jacobi determinant of parametrization.

The derivatives of integrand F = Lenv ·R ·v of environment mapping
are (d = 1,2):

∂F
∂ud

=
∂Lenv

∂ud
Rv+Lenv ∂R

∂ud
v.

Thus, we need to evaluate the derivative of reflection factor and of
environment lighting. The visibility factor is piecewise constant, so
its derivative would be zero.

4.1 Global parametrization

In the case of global parametrization the unit square is mapped to
the set of directions independently of the local orientation of sur-
face. The incident direction is obtained in spherical coordinates
ϕ = 2πu1, θ = πu2, which are converted to Cartesian coordinates
of the system defined by basis vectors i⃗, j⃗,⃗k:

ω⃗ ′(u1,u2) =

i⃗cos(2πu1)sin(πu2)+ j⃗ sin(2πu1)sin(πu2)+ k⃗ cos(πu2).

The derivatives of incident direction are as follows:

∂ω⃗ ′

∂u1
=−2π⃗isin(2πu1)sin(πu2)+2π j⃗ cos(2πu1)sin(πu2),

∂ω⃗ ′

∂u2
= π⃗icos(2πu1)cos(πu2)+π j⃗ sin(2πu1)cos(πu2)− π⃗k sin(πu2).

(5)

The Jacobi determinant of global parametrization is

∂ω
∂u1∂u2

= 2π2 sinθ = 2π2 sin(πu2).

4.2 Diffuse BRDF parametrization

We can also use the parametrization developed for BRDF sam-
pling. The illumination direction is generated in the tangent space
of shaded point x⃗, defined by surface normal N⃗⃗x, arbitrary tangent
T⃗⃗x that is perpendicular to the normal, and binormal B⃗⃗x that is per-
pendicular both to the normal and the tangent, and it should mimic
the cosine distribution:

ω⃗ ′ = T⃗⃗x cos(2πu1)
√

u2 + B⃗⃗x sin(2πu1)
√

u2 + N⃗⃗x
√

1−u2.

The derivatives are:

∂ω⃗ ′

∂u1
=−2π T⃗⃗x sin(2πu1)

√
u2 +2π B⃗⃗x cos(2πu1)

√
u2,

∂ω⃗ ′

∂u2
= T⃗⃗x

cos(2πu1)

2
√

u2
+ B⃗⃗x

sin(2πu1)

2
√

u2
− N⃗⃗x

1
2
√

1−u2
. (6)

The Jacobi determinant compensates the cosine term:

∂ω
∂u1∂u2

=
π

cos θ⃗x
=

π√
1−u2

.

4.3 Specular BRDF parametrization

In case of a Phong BRDF, the direction is generated in reflection
space defined by the reflection direction

ω⃗r = 2N⃗⃗x(N⃗⃗x · ω⃗)− ω⃗

and two other orthonormal vectors T⃗r and B⃗r that are perpendicular
to ω⃗r. The mapping should follow the (ω⃗r · ω⃗ ′)n function:

ω⃗ ′(u1,u2) = T⃗r cos(2πu1)

√
1− (1−u2)

2
n+1 +

B⃗r sin(2πu1)

√
1− (1−u2)

2
n+1 + ω⃗r(1−u2)

1
n+1 .

The derivatives are obtained as:

∂ ω⃗ ′

∂u1
=−2πT⃗r sin(2πu1)

√
1− (1−u2)

2
n+1 +

2πB⃗r cos(2πu1)

√
1− (1−u2)

2
n+1 ,

∂ω⃗ ′

∂u2
= T⃗r cos(2πu1)

(1−u2)
1−n
n+1

(n+1)
√

1− (1−u2)
2

n+1

+



B⃗r sin(2πu1)
(1−u2)

1−n
n+1

(n+1)
√

1− (1−u2)
2

n+1

− ω⃗r
1

(n+1)(1−u2)
n

n+1
.

(7)

The Jacobi determinant of mapping is

∂ω
∂u1∂u2

=
2π

(n+1)(ω⃗r · ω⃗ ′)n =
2π

(n+1)(1−u2)
n

n+1
.

4.4 Derivatives of the reflection factor

The reflection factor includes the Jacobi determinant of mapping, so
it must be discussed taking into account the parametrization. If we
use diffuse BRDF parametrization for a diffuse surface, the Jacobi
determinant will compensate the cosine term, making the reflection
factor constant, and consequently its derivative equal to zero. Simi-
larly, the specular BRDF parametrization of a specular surface also
results in a zero derivative. For more complex BRDFs that have no
exact importance sampling, we can still use BRDF parametrization
of a similar BRDF, for example, that of the diffuse or the Phong
solutions. Of course, their Jacobi determinants will not fully elimi-
nate the BRDF and the cosine term, so we have some non-constant
function that needs to be derived.

Let us now consider global parametrization, where the Jacobi de-
terminant is 2π2 sin(πu2). If the material is diffuse with diffuse
reflectivity kdif, and the surface normal at the shaded point x⃗ is N⃗⃗x,
the partial derivatives of reflection factor including the BRDF, the
cosine term, and the Jacobi determinant are (d = 1,2):

∂R
∂u1

= 2π2kdif

(
∂ω⃗ ′

∂u1
· N⃗⃗x

)
sin(πu2),

∂ R
∂u2

= 2π2kdif

((
∂ω⃗ ′

∂u2
· N⃗⃗x

)
sin(πu2)+π(ω⃗ ′ · N⃗⃗x)cos(πu2)

)
,

if ω⃗ ′ · N⃗⃗x ≥ 0 and zero otherwise. The derivatives of incident direc-
tion are given in Equation (5).

The derivatives can also be computed for specular BRDFs, for ex-
ample, for the Phong BRDF:

R = 2π2kspec
(
ω⃗ ′ · ω⃗r

)n sin(πu2),

where kspec is the specular reflectivity. Applying the rules of deriva-
tion systematically, we get:

∂R
∂u1

= 2π2nkspec
(
ω⃗ ′ · ω⃗r

)n−1
(

∂ω⃗ ′

∂ u1
· ω⃗r

)
sin(πu2),

∂R
∂ u2

= 2π2nkspec
(
ω⃗ ′ · ω⃗r

)n−1
(

∂ω⃗ ′

∂u2
· ω⃗r

)
sin(πu2)+

2π3kspec
(
ω⃗ ′ · ω⃗r

)n cos(πu2).

4.5 Derivatives of the environment lighting

The environment lighting may be defined analytically or by a tex-
ture map.

4.5.1 Simple sky illumination

For example, a sky illumination with the Sun at direction ω⃗sun can
be expressed as

Lenv(ω⃗ ′) = Lsky +Lsun(ω⃗ ′ · ω⃗sun)
s,

where Lsky and Lsun are the sky and sun radiances, respectively,
and s is the exponent describing the directional fall-off of sun ra-
diance. With this environment radiance, the derivatives of environ-
ment lighting are (d = 1,2):

∂Lenv

∂ud
= sLsun(ω⃗ ′ · ω⃗sun)

s−1
(

∂ ω⃗ ′

∂ ud
· ω⃗sun

)
.

4.5.2 Texture based environment lighting

If the environment lighting is defined by a texture map, we first
project it into a spherical harmonics basis [Ramamoorthi and Han-
rahan 2001]:

Lenv(ω⃗ ′) = ∑
l

Lenv
l0 Y 0

l (cosθ)+

∑
l

−l

∑
m=−1

Lenv
lm Y m

l (cosθ ,sin(−mϕ))+∑
l

l

∑
m=1

Lenv
lm Y m

l (cosθ ,cos(mϕ)),

where Y m
l are the spherical harmonics basis functions.

Global spherical angles ϕ and θ can be expressed as

cosθ = z, cosϕ =
x√

1− z2
, sinϕ =

y√
1− z2

,

where x,y,z are the components of incident direction vector

ω⃗ ′(u1,u2) = (x(u1,u2),y(u1,u2),z(u1,u2)).

The derivatives of environment requires the derivatives of spherical
basis functions. In practice the number of bands l is quite small,
thus it is worth precomputing these basis functions in algebraic
form by hand.

The first 9 spherical basis functions are obtained as:

Y 0
0 = 0.282095,

Y−1
1 = 0.488603y,

Y 0
1 = 0.488603z,

Y 1
1 = 0.488603x,

Y−2
2 = 1.092548xy,

Y−1
2 = 1.092548yz,

Y 0
2 = 0.315392(3z2 −1),

Y 1
2 = 1.092548xz,

Y 2
2 = 0.546274(x2 − y2).

The derivatives with respect to ud (d = 1,2) of the basis functions
can be obtained by a direct derivation of the formulae:

∂Y 0
0

∂ud
= 0,

∂Y−1
1

∂ud
= 0.488603

∂y
∂ud

,



∂Y 0
1

∂ud
= 0.488603

∂ z
∂ud

,

∂Y 1
1

∂ud
= 0.488603

∂x
∂ud

,

∂Y−2
2

∂ud
= 1.092548

(
∂x

∂ud
y+ x

∂y
∂ud

)
,

∂Y−1
2

∂ud
= 1.092548

(
∂y

∂ud
z+ y

∂ z
∂ud

)
,

∂Y 0
2

∂ud
= 0.315392

(
6z

∂ z
∂ud

)
,

∂Y 1
2

∂ud
= 1.092548

(
∂x

∂ud
z+ x

∂ z
∂ud

)
,

∂Y 2
2

∂ud
= 0.546274

(
2x

∂ x
∂ud

−2y
∂y

∂ud

)
.

5 Results

The environment mapping algorithm has been implemented using
the Direct3D 9 framework and run on an nVidia GeForce 8800 GFX
GPU.

In environment mapping, adaptive sampling generates points in a
unit square according to the product form integrand

Lenv(ω⃗ ′(u1,u2)) fr(ω⃗ ′(u1,u2), x⃗, ω⃗)cosθ ′
x⃗(u1,u2)

∂ω
∂u1∂ u2

,

that includes the environment illumination, the cosine weighted
BRDF and the Jacobi determinant of mapping.

In Figure 6 we compare the adaptive sampling scheme involving
global parametrization and diffuse BRDF parametrization to classi-
cal BRDF sampling. The reference image is shown in Figure 5. The
dynamic range of environment map is 1 to 320. We used the Halton
sequence with random initial index in BRDF sampling and in adap-
tive sampling as well, thus the low-discrepancy properties of sam-
ples have been exploited both in the classical and the new methods.
All methods were given the same computation time (50 sec), while
we traced 100 rays per pixel with BRDF sampling and 90 rays with
adaptive sampling. The ten percent reduction of number of samples
is due to the overhead of sample management in adaptive sampling.
The proposed adaptive scheme has significantly reduced the noise.
BRDF parametrization is better than global parametrization as it
automatically ignores that part of the integration domain where the
cosine term would be zero.

The L2 errors of images rendered with adaptive and classic BRDF
sampling are shown in Figure 3 as a function of the samples per
pixel. Adaptive sampling roughly halves the error for the price of a
ten percent higher computation cost.

Finally in Figure 7 we demonstrate the adaptive sampling approach
in specular surface rendering. This figure compares the images
rendered by classical BRDF sampling using 80 samples per pixel
and adaptive sampling with Phong parametrization working with 70
samples per pixel. Both methods were given the same computation
time (45 seconds). We also show a reference image for comparison,
that was obtained with 500 samples generated by BRDF sampling.
The exponent of Phong BRDF is set to 5. The dynamic range of
environment map is 6 to 1320.

The L2 image error for specular surface rendering is shown in Fig-
ure 4.
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Figure 3: L2 error of adaptive sampling with diffuse BRDF
parametrization compared to classic BRDF sampling with respect
to the number of samples per pixel.
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Figure 4: L2 error of adaptive sampling with Phong BRDF
parametrization compared to classic BRDF sampling with respect
to the number of samples per pixel.

6 Conclusions

This paper proposed an adaptive sampling scheme based on the el-
emental interval property of low-discrepancy series and the deriva-
tives of integrand at the samples. The derivatives provide addi-
tional information to the sampling process, which can place sam-
ples where they are really needed. The low-discrepancy series not
only distributes samples globally, but it also helps refining the sam-
ple structure locally without neighborhood searches.

Having generated the samples and evaluated the integral, we have
all information needed to evaluate Equation (4), which provides er-
ror bounds for the estimate. Such bounds are badly needed in pre-
dictive rendering applications.

We proposed the application of method in integration problems of
moderate dimension, for which environment mapping is a straight-
forward choice.
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Figure 6: Diffuse objects rendered with BRDF sampling, adaptive sampling with global parametrization, and adaptive sampling with diffuse
BRDF parametrization. The lower images are zoom-ins of Ming’s chin.

Figure 5: A reference rendering of the diffuse object using 500
samples obtained with BRDF sampling.
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D. Cohen-Or, Eds., 260–269.

ROUSSELLE, F., CLARBERG, P., LEBLANC, L., OSTROMOUKHOV, V., AND

POULIN, P. 2008. Efficient product sampling using hierarchical thresholding.
The Visual Computer 24, 7 (July), 465–474.

SBERT, M. 1997. Error and complexity of random walk Monte Carlo radiosity. IEEE
Transactions on Visualization and Computer Graphics 3, 1, 23–38.

SCHJØTH, L., FRISVAD, J. R., ERLEBEN, K., AND SPORRING, J. 2007. Photon
differentials. In Proceedings of the 5th International Conference on Computer
Graphics and Interactive Techniques in Australia and Southeast Asia, ACM, Perth,
Western Australia, A. Rohl, Ed., 179–186.

SUYKENS, F., AND WILLEMS, Y. D. 2001. Path differentials and applications. In
Proceedings of Eurographics Workshop on Rendering, Springer, London, UK, S. J.
Gortler and K. Myszkowski, Eds., 257–268.
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